penPE |

User’s Guide

Revision History

Date Description
6/19/2014 Version 1.0
9/22/2014 Version 1.1 with updated sections 2.3.4, 5, 6.3, and Appendices
4/7/2015 Version 1.2 with updated section 6 on OpenPET CAT GUI

penPET

http://openpet.Ibl.gov

~

A
frrereee ‘m

BERKELEY LAB

Table of Contents

Table Of FigUIres .iuiiiiiciiiiiiisiiiniss s riini s sr s s s s s s s s s a s s s n s a s s s s mannnnnas 4
Abbreviationsc.ccciiiiiiiiiii e e aa 7
I V- =Y 1 TR0 R - - 8
T T DOIIIUIOIIS ...ttt nnnnnnnnnnnnns 8
(P R B 0 o o To) o A - | (= SRR 9

R I B 11 (=T o2 (o) o T PR 9
1.1.3 CoinCIdence UNit ...c..ooiiiiiiiiiieee 10

7.2 SYSIEITI COPMIQUIGLION ...t st e s assssssssssssssssssssssssssssnssnnns 70
1.2.1 SMaAll SYSIEM ..ot e e 11
1.2.2 StANAArd SYSTEM ... 11
1.2.3 LArge Sy S oM et e e e e 12

7.3 THTUNG & TIHTUIIG SIGIIGIS ...ttt sttt sssssssssssssssssssssssnsssnns 73
1.3 SYSIEM CIOCK. ..ottt e e e e e e e e e e e 13
1.3.2 Time SHCE BOUNUAIYooiiiiiiiie et 14
RS TRC T 10 L= 1 o U 14

7.4 FIrmware QnQ SOMWEIE SHUCHIIESueeeeeeeeteesssssesssnes 74
1.4 Large SY S oM e e e e e e 14
1.4.2 SMaAll SYSIEM ...t 17

2 Getting Started — Small System Oscilloscope Modecccciiniiiieasiiniieassrnissananas 19
2.7 GOIING IAQ JHAIQWESC ...ttt ittt aarnaannennees 79
2.2 ASSEIMDNNG [AE HEIAWELC ...ttt eea e e e eaeeeaans 79
2.3 Dowrnloading the SOMWAre QrQ FITTWEI@.ueeeeeeeeeeeeeeeeeeseeaeeeeeeeaeeaaeeeaeeaaaaeaaaaaaaaasaasnannnnss 27
2.3.1 Installing QUICKUSBcoiii ettt a e 21
2.3.2 Installing AIREIa TOOISccoiviiiiiiiii 24
2.3.3 Installing USB-BIaster DIIVETccoiiiiiiiiiiiie ettt 24
2.3.4 Installing OpenPET Firmware & SOftWareccuuviiiiiiiiiiiie e 26
2.3.4.1 Programming OpenPET flash IMAagEsS ... sesssssssssssssaess 27

2.4 Running a Small System in OSCHOSCOPE MOQGE..................ccoeeeeeeeeeeciiiiiiaaaeeeecciiiiaaaeeeeeecine 29
DA S B @71 491 44 =T o Lo - SRR 29
2.4.2 Data ACQUISITION. ... e e e e e e e e en e e e e e e e ene s 32
2.4.3 Example System Setup & Data ACQUISItION.........cooiiiiiiii 32

R N) I L 34
b8 T B - = o o 4= | PR 34
2.5.1.1 SiNgle DeteCtOr BOATM ...uvcrueeeiereeessrersesssssessessssssesssss s st ss s s s sssssss st sesss s ss s sssesss s sssessssssssssessssssssssesssanns 34

2.5.1.2 Multiple DeteCtOr BOATAS ...cuiereeeerersesssreressssssesssssssssessesss s s sesssssss s sssssssss s s sssss s sessssssssssessssssssssesssanss 38

R - /g e i = o 40

3 Detector Boardcciviiiiiiniiiii i i 41
BeT BUS JOoeoeeeeeee ettt e et e e e e annnea e 47
3.2 76-Channe! DEIECIOIN BOGIU................ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetteetettetettaetettteettattaeataaaaaaaaaaaaanees 44
3.2.1 Analog Signal ConditiONINGccoeeiiiiiiiiiiii e 46
3.2.2 TIMING SIGN@L ...t e e e e 46
B.2.3 ADC oottt e e e e b et e e e e e e e ae e e e e s 46
K S I L P EEPP PP PPPPPR 46
3.2.5 DeteCtor MEMOIY ... 46
3.2.6 Analog INPUt CONNECHIONSeiiiiiiiiiiie e e e e e ea e 46

4 Support Boardc.viiiiiiiiiiiias i s s E s aaa s 48
A N K RS 49

penPET 2 e)

BERKELEY LAB

4.2 Master FPGA & SUPPOIt MICIOPDIOCEOSSOScccceeeeaeiiiieeaaeeeeeeesiiieeee et 49

G.3 SUPPOSE MEITIOIY ...ttt ettt ettt ettt ettt ettt it ettt ittt aaaanaannnnnees 49
N O 0T G Oe o 1 o e 50
I 00 Ly ey (0 N Y (0 £ T o0
Y (o) . L RSP 50
4.6.1 Coincidence Interface Board (SIOt 8).........oouiiiiiiiiiiii e 50
4.6.2 HOSt PC INterface (SI0t) ... i 50
G B U Y= o [2 5 [A 0 PP EPPR P PPPPPR 50
4.6.4 Debugging (SIOt 1) e it 51

L I 0 1 111 11 11 £ 1« - 52
6 OpenPET Control and Analysis Tools (OpenPET CAT)....ccvviicciiiimiccnniinnnnann, 62
O. 7 JDISLEIIIG RO ONT ...ttt s st sttt st st s st s s s s s st s st s s sssssssnssnnns 62
O.2 USIHIQ OPENIPET CAT .ottt st ssssss st st st s st st s s s s sssssssssssssssssssnsssnnns 62
6.2.1 ConfIgUuration FileS........ooiiiiiiiiiiie e 62
6.2.2 OpenPET CAT Library @and MacCrOScoouiiiiiiiiiiiiiieie et 66
6.3 OpenPET CAT Grapfifc USEr INIGITACEeeeeeeeeeeeeeeeeeeeeeetteeeeeaeeeattttaaaaaaaeessssaaans 67
0 T IR 011 o Yo [[1 T o PRSPPI 67
6.3.2 OpenPET Control and Analysis - Data ACQUISItION.........ccooiiiiiiiiee 67
6.3.2.1 CONTIGUIE SYSTEIM ..cevurrrrrieriisssserssetsssssesssesss st s e s s s s SRS RS R RS e R 68

6.3.2.2 ACQUITE DaltAuuiiiiiii iSRS 70

6.3.2.3 DiISPlaY WaVEOTIN .couvieerrerieiriieresetsssssessesssssesssssss s s s st s sss s s s s s 71

6.3.2.4 GENETAte ROOT FlB..uiireiiecseiestssissesssensssssssssessssssussssssasssssssssssssssnes 74

6.3.3 OpenPET Control and Analysis — ROOT ANAIYZEXcooiiuiiiiiiiiiiiiiiieeee e 76
LTS T0S 701 B D)13 0 =0 3 1 1B o PPN 77

6.3.3.2 DiSPlay HISTOZTAIMNS c.uuvverieruiriiersseesssssesssesssssssssesss s s s ss s s s s 78

CST0S T0S 70 N 0)13 01 =20 2 U o Y Dy 4 =)o 1000 PO 79

7 Acknowledgements ..uicccciiiiiiiciciiiiiiacs i e i e s rrr e a s arraa s 81
- T 1 11« -G 81
L T« 7 o Y= £ e T - 82
9.7 Appendix 1. 16-Channel Detector Board Default VAIUESu..eeeeeeeeeeeeeeaaaeeeercevaaannn. &2
9.2 Appendix 2: TroubleShooling DIGGIIOSIICScccoeeeeeeeeeeeeeieeeeeeeeeeeeeeee e 83
9.2.1 Test Digital Communication Chainccooiiiiiiiii e 83
9.2.2 Test Analog with Internal Trigger.......coo oo 85
S T =11 S e o = TN 86

~

penPET ’

Table of Figures

Figure 1: Schematic of the OpenPET system architecture.ccccooiiiiiii 8

Figure 2: Support Crate (left) and Detector Unit (right). A Detector Unit is a Support Crate with up to 8
Detector Boards (in Slots 0-7). For a Small System, Slot 8 is usually empty, although a
Coincidence Interface Board can (optionally) be plugged into it. For Standard and Large Systems,
a Coincidence Interface Board must be plugged into SIot 8.cuiiiiiiii i 9

Figure 3: Coincidence Unit for a Standard System (left) and a Large System (right). For both Standard
and Large Systems, a Coincidence Unit is a Support Crate with up to 8 Multiplexer Boards (in slots

0-7). In a Large System, the Multiplexer Boards function as multiplexers.ccccccceeieinnnnnnns 10
Figure 4: Configuration of @ Small OpenPET SyStem.uuiiiiiiiiiii e 11
Figure 5: Configuration of a Standard OpenPET System. Each of slots 0-7 in the CU contains a

Multiplexer Board-1 that services @ Single DU..............uuuuiiiiiiiiiiiiiiiiiiiieii e 12
Figure 6: Configuration of a Large OpenPET System. Each of slots 0-7 in the CU contains a Multiplexer

Board-8 that operates as a multiplexer, allowing that slot to service between 1 and 8 DUs.......... 13
Figure 7: System level timing SIgNalS.oooiiiiiiiii e 14

Figure 8: Tree network topology of an OpenPET Large System. A Coincidence Unit Controller (CUC)
that supports 8 Multiplexer Boards is housed in a crate with a power supply. The assembled unit is
called a Coincidence Unit. A Detector Unit Controller (DUC) that supports 8 Detector Boards is
also housed in a crate with a power supply. The assembled unit is called a Detector Unit. One
Coincidence Unit fans out to up to 64 Detector Units. The hardware of the CUC and DUC are the

same (Support Board). The differences are the firmware and software configurations. 16
Figure 9: Firmware and software structure for a Large System. ... 17
Figure 10: The tree network topology for a Small System. A CDUC performs the functions of both the

(O8O3 o N 5 1 U R OPPR 18

Figure 11: (a) Empty Support Crate viewed from the front. (b) Support Board viewed from the front. .. 20

Figure 12: (a) Close up of the small gap (~4 mm) between the Support Crate and the edge of the
Support Board when assembled properly. (b) Close up of the power cables attached to the back of
the Support Board. (c) Close up of the jumper board plugged into the back of the Support Board.

Figure 13: The assembled OpenPET Support Crate viewed from the (a) front and (b) back. 21
Figure 14: QuickUSB module mounted onto the (a) Host PC Interface Board or (b) Support Board..... 21
Figure 15: Bitwise Systems QuickUSB Library v2.15.1 InstallShield Wizard: a) welcome window, (b)
destination folder window, (c) installing the library window, and (d) installing the driver window... 22
Figure 16: QuickUSB Programmer used to program the QuickUSB module with the correct firmware:

QuickUSB QUSB2 Module v2.15.1 (Block HandshaKe).cooiiiiiiiiiiiiiiiiiiieee e 23
Figure 17: QuickUsb Diagnostics used to confirm the QuickUSB module with the correct firmware:
QuickUSB QUSB2 Module v2.15.1 (Block HandshaKe).cooiiiiiiiiiiiiiiiiiiieee e 23

Figure 18: Altera Tools installation windows: (a) download center window, (b) Quartus Il Web Edition
window, (c) Akamai NetSession Interface window, (d) User Account Control confirmation window,
(e) Quartus Il Web Edition Setup Wizard window and (f) Altera Nios2 Command Shell window... 25

Figure 19 OpenPET Directory Tree (OPE@NPET_ROOT).........coouiiiiiiiiiiiiee et 26
Figure 20 Windows Environment Variable through control panel ... 27
Figure 21 Setting the PATH environment variableoooiiii e 27

Figure 22: (a) Detector Board with jumpers installed on pins 1 and 2 for J1, J2 and J3. (b) USB-Blaster
plugged into the JTAG connector on the back of the Support Board. A custom jumper board is also

S O N 28
Figure 23 Support Board flash programming SCHPt.........c.uuiiiiiiiiii e 28
Figure 24 Detector Board flash programming SCHPt...........uuiiiiiiiiiiiiiee e 29
Figure 25: OpenPET address formats. Bits shown in white are not used.ccoccoiiiiiiiiii, 30

~

penPET ’ e)

BERKELEY LAB

Figure 26: TestData1.dat example data file generated from above command sequence, with 32
samples per channel. See Section 2.5 for more details on the data format and Section 9.2 on

AIagNOSHIC O NG oo 33
Figure 27: Definition of the Oscilloscope Mode data format for an ADC+TDC data train, where the

MAXIMUM N IS 254 . bbbttt bttt et e ettt e et ettt e et e e e e e eeeeeeeees 35
Figure 28: Format of the 32-bit Starting word 1 for an Oscilloscope Mode data train..............ccccccoenne 35
Figure 29: Format of the 32-bit Starting word 2 for an Oscilloscope Mode data train...............cccccoenne 36
Figure 30: Format of the 32-bit raw ADC data for an Oscilloscope data train..........ccccccooniiiiiiiiiicinnnnns 37
Figure 31: Format of the 32-bit raw TDC data for an Oscilloscope data train.ccccoiiiiiiieiiiinnns 37
Figure 32: Format of the 32-bit Ending word for an Oscilloscope Mode data train.ccccccceeeerinns 38
Figure 33: Example transmission of Oscilloscope Mode data trains from the CDUC to the Host PC.... 39
Figure 34: Diagram of the BUS 1O,oiiiiiiiiii et e e e 42
Figure 35: Connections between the Support Board and the Detector Board.ccccccooiiiinnnnnnnnne. 43
Figure 36: Block diagram of the 16-channel Detector Board.coveeiiiiiiiiiiiiieeee s 44
Figure 37: Block diagram of the front-end circuitries of one channel of the 16-channel Detector Board.

.. 45
Figure 38: Photograph of the 16-channel Detector Board..............oooiiiiiiiiiiiiiiiiiiceeeeeeee e 45
Figure 39: Pin assignment for the Analog Input Connector to the 16-channel Detector Board.............. 47
Figure 40: Schematic of the Support Board.ooooiiiiiiiiiii e 48
Figure 41: OpenPET command/response address formats. Bits shown in white are not used. 52
Figure 42: Example system configuration for a small system. ... 63
Figure 43: Example Multiplexer Board configuration file.cccoiiiiiiiiii e 64
Figure 44: Example Detector Unit configuration file.oooiiiiiii e 64
Figure 45: Example Detector Board configuration file. ... 65
Figure 46: Data Acquisition GUI Initial DiSPIaY........ccccoiiiiiiiiiiiiiie e 67
Figure 47: Sections of the Configuration tab ... 68
Figure 48: Opening system configruation file ... 69
Figure 49: ROOT SeSSION EXAMPIEeiiiiiiiiiiiieeii et e e e e e e e e 69
Figure 50: Detector Board configuration fil@ ... 70
Figure 51: Acquire data WiINAOWooooiiiiiiiiiii e 71
Figure 52: Initial Display Waveform tab ... 72
Figure 53: Display WaVefOrM ... ittt e e e e e e e e e e e e 73
Figure 54: Example highlighting number of skipped events............occuiiiiiiiiiiieee s 74
Figure 55: Generate ROOT Fil€ tabcoiiiiiiiieiiie e 75
Figure 56: Sequence of steps for saving @ ROOT file.........uuiiiiiiiiiiiii e 75
Figure 57: Generating ROOT File SESSIONuuuiiiiiiiiiiiiii e 76
Figure 58: ROOT Analyzer GUI Initial DiSPIAYccuiiiiiiiiiiiiiiiie e 76
Figure 59: Opening ROOT Filettt e e e e e e e e e e e e 77
Figure 60: Displaying First DB Hit and Hitmap ..o 78
Figure 61: Displaying First DB Energy Histogram ..o 79
Figure 62: Initial FIoodmap WINAOWcooiiiiiiii e 80
(Lo UL G2 Sl (o ToTo [aF=T o ==Y a]) - PR 80

Figure 64: The event index (x-axis) as a function of the length of a data train in bytes (y-axis). Data
were acquired for 5 seconds using 240 raw ADC samples per channel and test communication
(o= e= I (] 10 4 F- | SR PP OU ORI SURPPTIORt 84

Figure 65: Waveforms for internally generated counter data, shown for 600" data train and all 16 DB
channels with 240 ADC samples/channel. For each channel, the ADC sample index (x-axis) is
plotted as a function of the ADC value (Y-8XiS). ...ceiiiuuiriiiiieeiiiiiii et 85

Figure 66: Waveforms for all 16 DB channels, when a sine wave was inputted into only channel 0 and
data were acquired with 240 raw ADC samples/channel, test analog data format, and internal

~

penPET i e)

BERKELEY LAB

clock trigger. The sine wave had a frequency of 350 kHz and amplitude of 400 mV. For each
channel, the sample number index (x-axis) is plotted as a function of amplitude (y-axis). 86

~

penPET ° e)

BERKELEY LAB

Abbreviations

CDUC: Coincidence Detector Unit Controller
CI: Coincidence Interface Board

C/R: Commands and Responses

CU: Coincidence Unit

CUC: Coincidence Unit Controller

DB: Detector Board

DU: Detector Unit

DUC: Detector Unit Controller

EPCS: Enhanced Programming Configuration Serial device
FIFO: First-in, First-out Data Buffer

FPGA: Field-Programmable Gate Array

MB: Multiplexer Board

PLL: Phase-Locked Loop

SB: Support Board

TDC: Time-to-Digital Converter

penPET 7

~

A
freeeeer ‘m

[BeErkELEY LAS]

1 System Overview

This document describes the OpenPET electronics architecture. The purpose of the OpenPET electronics is to
provide a system that can be used by a large variety of users, primarily people who are developing prototype
nuclear medical imaging systems. These electronics must be extremely flexible, as the type of detector, camera
geometry, definition of event words, and algorithm for creating the event word given the detector outputs will vary
from camera to camera. This implies that users must be able to modify the electronics easily, which further
implies that they have easy access to documentation, including the schematics and documents needed to
fabricate the circuit boards (Gerber files, bill of materials, etc.) and source code (for both firmware and software).
They also need support, in the form of instructions, user manuals, and a knowledge base, and they want
fabricated circuit boards to be readily available. Thus, the OpenPET system includes hardware, firmware, and
software. It is scalable enough to provide solutions ranging from a "test bench" for a small number of detector
modules to a complete camera, and it is "open source" to both maximize flexibility and minimize redundant
development.

Ee 1 = i
== = H
Detector Support Y 0oy i s
B Board [Board ; P _> S e EreD
: . uP
Detectors ‘T———— | ‘T i rer l
Data — Host PC
Control ——

Figure 1: Schematic of the OpenPET system architecture.

The system architecture is shown in Figure 1.There are four types of custom electronics boards in the system: the
Detector Board (DB), the Support Board (SB), the Multiplexer Board (MB), and the Coincidence Board. The
Coincidence Board is identical to the Support Board, but has different FPGA firmware loaded into it. The general
data flow is that analog signals from detector modules provide the inputs to the Detector Board. This board
processes the analog signals to create a Singles Event Word, which is a digital representation of this single
gamma ray interaction. These Singles Event Words are passed to the Support Board, whose main function is to
multiplex the Singles Event Words from multiple Detector Boards. The Multiplexer Board is optional—it can
provide a further layer of multiplexing for Singles Event Words, if desired. The multiplexed Single Event Words
are then passed to the Coincidence Board, which searches through the Singles Event Words for pairs that are in
time coincidence and forms a Coincidence Event Word when it does so. These Coincidence Event Words are
then passed to the Host PC. Optionally, the Coincidence Board can act as a multiplexer and pass unaltered
Singles Event Words to the Host PC. Control Signals originate from the Host PC, are passed to microprocessors
that are on the Coincidence Board and Support Board, and are forwarded from there.

1.1 Definitions

The OpenPET components are housed in an assembly whose form factor is the same as a 12-slot VME 6U crate.
A Support Board essentially replaces the backplane of the VME crate and all the other boards plug into it. The
plug-in boards have the same form factor as a VME 6U board, except that the position of the connectors is offset
(compared to true VME boards) to prevent OpenPET boards from being plugged into standard VME systems and
vice versa.

~

penPET i e)

1.1.1 Support Crate

A Support Crate (Figure 2) is conceptually similar to a VME crate (with controller), namely an intelligent support
structure that “functional” boards can be plugged into. It consists of a mechanical frame with 12 plug-in slots, a
Support Board (that has a considerable amount of programmable processing power and also acts as a
backplane), power supplies, cooling fans, and appropriate boards plugged into slots 9-11. Slots 0—8 are vacant.
Slot 9 holds a Host PC Interface Board, which is used to communicate with the Host PC; this board is required.
Slot 10 holds a User 10 Board, which allows users to interface to external components such as EKG signals and
motor controllers; this board is optional. Slot 11 holds a Debugging Board, which has interfaces to logic analyzers,
a number of diagnostic LEDs, an external clock input, and a JTAG connector; this board is optional. Some
ancillary components (such as DRAM memory and a QuickUSB board) are also necessary for a functioning
Support Crate. By programming the Support Board with appropriate (but different) firmware, the Support Crate
becomes part of either a Detector Unit or a Coincidence Unit.

1.1.2Detector Unit

A Detector Unit (DU), as shown in Figure 2 consists of a Support Crate with between one and eight Detector
Boards plugged into slots 0—7. Each Detector Board can process up to 32 analog input signals. A Detector Unit
can therefore process up to 256 analog signals, which corresponds to 64 conventional block detector modules
(with 4 analog outputs per module). In a Small System, Slot 8 is empty (if data is transferred to the Host PC
through USB or Ethernet via the Host PC Interface Board plugged into Slot 9). In a Standard or Large System, a
Coincidence Interface Board must be plugged into Slot 8 of the Detector Unit. There are two versions of the
Coincidence Interface Board: Coincidence Interface Board-1 (CI-1) for the Standard System and Coincidence
Interface Board-8 (CI-8) for the Large System. At present, the Coincidence Interface Board-8 has not been
designed or specified. These boards transfer event data and bidirectional control data between the Detector Unit
and a Coincidence Unit.

Support Crate Detector Unit (Standard System)
Support Board Support Board

I

Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Host PC Interface
User 10
Debugging
Detector Board 0
Detector Board 1
Detector Board 2
Detector Board 3
Detector Board 4
Detector Board 5
Detector Board 6
Detector Board 7
Coincidence Interface-1
Host PC Interface
User 10
Debugging

I
l
|

4 5 6 7 8

°|
=
~|
“|

0 1 2 3 4 5 6 7 8 9 10 1

©
-
(=]
-
-

Power and Fans Power and Fans

Figure 2: Support Crate (left) and Detector Unit (right). A Detector Unit is a Support Crate with up to 8
Detector Boards (in Slots 0-7). For a Small System, Slot 8 is usually empty, although a Coincidence
Interface Board can (optionally) be plugged into it. For Standard and Large Systems, a Coincidence
Interface Board must be plugged into Slot 8.

In a Small System (see Section 1.2.1), the Support Board in the Detector Unit is programmed to multiplex outputs
from the Detector Boards, process coincident events, and pass the coincident events to the Host PC. It can also
be programmed to multiplex singles events and pass them to the Host PC. In a Standard or Large System (see
Sections 1.2.2 and 1.2.3), the Support Board in the Detector Unit is programmed to multiplex singles events from
the Detector Boards and forward them to a Coincidence Unit.

~

penPET i e)

BERKELEY LAB

1.1.3Coincidence Unit

In Small Systems the coincidence processing is performed on the Detector Unit's Support Board. In Standard and
Large Systems the coincidence processing is performed in a Coincidence Unit (CU) as shown in Figure 3. The
Coincidence Unit for a Standard System consists of a Support Crate with between one and eight Multiplexer
Boards plugged into slots 0—7. The Support Board is loaded with firmware to perform the coincidence processing.
Each Multiplexer Board communicates with one Detector Unit via the Coincidence Interface Board using a cable.
Similar to the Coincidence Interface Board, there are two versions of the Multiplexer Board: Multiplexer Board-1
(MB-1) for the Standard System and Multiplexer Board-8 (MB-8) for the Large System. At present, the Multiplexer
Board-8 has not been designed or specified. The Coincidence Unit's Support Board is programmed to do the
coincidence processing and pass the coincident events to the Host PC, although it can also function as a
multiplexer and forward singles events. Data is transferred to the Host PC either through USB or Ethernet via the
Host PC Interface Board plugged into Slot 9.

In the Coincidence Unit for the Standard System, each MB-1 connects with only one Detector Unit via a single
cable, allowing up to 64 Detector Boards (or 512 block detector modules) in the system. In the Coincidence Unit
for a Large System, the MB-8s plugged into slots 0—7 connect via cables (one cable per Detector Unit) with up to
8 Detector Units, allowing up to 512 Detector Boards (or 4096 block detector modules) in the system. The MB-8s
are programmed to serve as multiplexers for events coming from up to 8 Detector Units. Due to the nature of
multiplexing, this allows a larger number of channels to be serviced, but does not increase the maximum total
event rate (singles or coincidence).

Coincidence Unit (Large System)

Coincidence Unit (Standard System)

Support Board
Support Board PP
Q0191 (%R (%R (R[] |%R|%® M
N PR R PR P pra g B (Bl | el S
o I e I I I = I I g ©| @ | © © © | @ | © | O g o)
38|58 8|58 /5 £ 2181|188 (8] (8|8l 8] |8 o] £
mmmmmmmma&g% l-\-l-hh\-l-\-‘é_g:g
IR R A A R R R A = ol |ol|(o o oo e o o
ol|a||a|l|a||e||a||a @ b x| | x| [x| x| x||x||x||x||El|o||al]l3
x| x||x||x||x||x||x||x||E O a3 9|89 |8 |2 g |2 |9 |ullallS||8
222 |2 |22 2|2 W|a|l D0 S (2|2 g |2 |8 g 2 - o
SIS SRS RS RS R RS 2 (=] B EEE B E I E B 2
SIETEIEIEIEIEIEIRIE 2112121121212 1213|| ||
=== ==
HIEIEIEREIEIEIE T
A A A A = o o a oan oaa 0 4 5 8 9 10 1N
2 3 6 7 8 10 1
Power and Fans
Power and Fans

Figure 3: Coincidence Unit for a Standard System (left) and a Large System (right). For both Standard
and Large Systems, a Coincidence Unit is a Support Crate with up to 8 Multiplexer Boards (in slots 0-
7). In a Large System, the Multiplexer Boards function as multiplexers.

1.2 System Configuration

OpenPET can be configured either as a Small System, a Standard System, or a Large System, with the
difference largely due to the number of analog signals that can be read out. To determine which system
components you need, the first step is to determine how many DBs are necessary. Each DB can process up to 16
or 32 analog signals (depending on the DB used, mixing of different types of DB is not supported), so the
minimum number of DBs necessary is the number of analog signals divided by 16 or 32. While information can be
shared between DBs, processing is far easier if all the signals from the same detector module are on the same
DB. Thus, if your detector module has 5 analog outputs and you use a 32-channel DB, it is easiest to have each
DB process 30 analog signals (i.e., from six detector modules) and not use the other two channels on each
Detector Board. Thus, the initial estimate for the number of DBs needed is the number of analog signals divided
by the number of analog signals you will have each DB process. This estimate may be modified due to the
camera topology, as described in the following subsections. Once you have determined this initial estimate for the

~

penPET * e)

BERKELEY LAB

number of Detector Boards, you can determine whether you will need a Small, Standard, or Large OpenPET
System.

1.2.1 Small System

If the total number of Detector Boards is 8 or fewer, you can use a Small System. This consists of a single
Detector Unit (defined in Section 1.1.2) connected to a Host PC (Figure 4). A DU can have anywhere between 1
and 8 DBs plugged into it. The initial estimate of the number of DBs in your system may need to be increased to
support the camera topology. In the Small System, the default coincidence processing algorithm searches for
coincidences between singles events that originate on different DBs, but it doesn’t allow coincidences between
singles events that originate on the same DB. Thus, more DBs may be necessary to allow all the desired
coincidences, as none of the modules in a DB can be in coincidence with each other.

As an example, consider a four-headed PET system, where each head consists of a 3x3 array of detector
modules and each detector module has five analog outputs. The OpenPET system would be configured as
follows. Each 32-channel DB would service 6 detector modules, using 30 analog channels and leaving two
channels on each DB unused. As the system consists of 36 detector modules (four heads of nine modules each),
the initial estimate for the number of DBs is six. To see whether the appropriate coincidences can be
accommodated, we first try to distribute the detector modules as follows. DB 0 services six modules from head 0,
DB 1 services three modules from head 0 and three from head 1, DB 2 services six modules from head 1, DB 3
services six modules from head 2, DB 4 services three modules from head 2 and three from head 3, and DB 5
services six modules from head 3. Unfortunately, this will not work, as two Detector Boards (numbers 1 and 4)
service modules from two different heads, which means that the system will not look for all possible coincidences
between detector modules that are in different heads. No amount of redistributing the modules among the DBs
will satisfy these criteria either. Thus, the only way the coincidence criteria can be satisfied (using the default
coincidence processing software) is to use two DBs per head, for a total of eight Detector Boards. While the
coincidence processing software can be rewritten to allow coincidences between two singles events that originate
in the same DB, this is likely to take significantly longer and cost more than purchasing two additional Detector
Boards.

Host PC

Detector
Unit

Figure 4: Configuration of a Small OpenPET System.
1.2.2 Standard System

If the total number of DBs is between 9 and 64, you can use a Standard System. This consists of between 2 and
8 DUs (defined in Section 1.1.2) and a single CU (defined in Section 1.1.3) connected to a Host PC (Figure 5).
The DUs are connected to the CU via the Coincidence Interface Board CI-1 in each of the DUs and the
Multiplexer Board MB-1 in the CU. Determining the number of DUs and DBs per DU needed follows the same
principles as described in the Small System section. Each DU should only contain modules that will not be in
coincidence with each other, as the default coincidence processing software does not allow coincidences
between detectors that originate from the same DU. The DU should then contain the minimum number of DBs
necessary to service all the required detector modules.

~

penPET) e)

BERKELEY LAB

Each DU services a maximum of eight DBs, and each 32-channel DB services a maximum of 32 analog inputs
(note that a conventional PET block detector has four analog outputs, one for each photomultiplier tube). Thus,
the Standard System can support a maximum of 2048 analog inputs (32 analog channels per DB, 8 DBs per DU,
and 8 DUs per CU), which corresponds to 512 block detector modules.

As an example, consider a cylindrical PET camera, where each detector module has five analog outputs and
covers a 5.cm x 5 cm area. There are 44 detector modules per ring (roughly 70 cm diameter) and 5 rings (25 cm
axial coverage). The OpenPET system would be configured as follows. The system consists of 220 detector
modules. Each 32-channel DB would service 6 detector modules, using 30 analog channels and the remaining
two channels on each DB would be unused. As there are a maximum of eight DBs per DU, a DU can service a
maximum of 48 of these detector modules. If we divide the 220 modules by 48 modules per DU, we find that the
system requires 4.583 DUs. Since DUs are quantized, it really needs 5 DUs, with each DU servicing 44 detector
modules. In order to make sure that the correct coincident pairs will be collected, the modules in each DU should
be selected so that each DU services a “pie slice” that spans ~72° azimuthally and the full 25 cm axial thickness.

cu
o 5 ... (up to eight) 5
DUO DU1 DU7

Figure 5: Configuration of a Standard OpenPET System. Each of slots 0-7 in the CU contains a
Multiplexer Board-1 that services a single DU.

1.2.3Large System

If the total number of DBs is between 65 and 512, you must use a Large System. This consists of between 9 and
64 DUs (defined in Section 1.1.2) and a single CU (defined in Section 1.1.3) connected to a Host PC (Figure 6).
The DUs are connected to the CU via the CI-8 in each of the DUs and the MB-8 in the CU. Determining the
number of DUs and DBs per DU needed follows the same principles as described in the Standard System
section. The difference between the Standard and Large Systems is that the Multiplexer Board-8 that plugs into
slots 0—7 of the CU contains active circuitries (i.e., FPGA, etc.) that are configured as multiplexers. This allows
each of the eight slots in the CU to service up to eight DUs (in a Standard System, each CU slot services a single
DU). Thus, the Large System can support a maximum of 16,384 analog inputs (32 analog channels per DB, 8
DBs per DU, and 64 DUs per CU), which corresponds to 4,096 block detector modules. Again, the group of DUs
processed by one slot in the CU should only contain modules that will not be in coincidence with each other, as
the default coincidence processing software does not allow coincidences between detectors serviced by the same
CU slot. The DU should then contain the minimum number of DBs necessary to service all the required detector
modules.

~

penPET * e)

CU (up to 8 DU per MB-8)

o S ... (up to 64) 5
DUO DU1 DU63

Figure 6: Configuration of a Large OpenPET System. Each of slots 0-7 in the CU contains a
Multiplexer Board-8 that operates as a multiplexer, allowing that slot to service between 1 and 8 DUs.

1.3 Timing & Timing Signals

The system level timing signals are shown in Figure 7. There are two timing signals—the System Clock, which is
an 80 MHz clock signal, and the Time Slice Boundary, which defines the beginning of a Time Slice. The firmware
will support both "short" and "long" event words. In "short" mode, the Time Slice Boundary is generated every
eight System Clock cycles, while in "long" mode it is generated every sixteen System Clock cycles. The choice
creates a tradeoff—in "short" mode the dead time is a factor of two shorter but the number of bits per event word
is also a factor of two smaller.

The general concept is that the system divides time into small, fixed length time slices (100—200 ns or 8-16
clocks). All individual operations must occur within a single Time Slice, which implies that only Single Event
Words that occur in the same Time Slice can be combined to form a coincident event. Since it can take
significantly longer than a single Time Slice to fully process a single event, the system is pipelined so that the
processing is divided into smaller steps that each can be completed in a single Time Slice. During one Time Slice,
each of the boards that output Singles Event Words (namely the Detector Boards and Coincidence Interface
Boards) can pass four Singles Event Words. Thus, the maximum singles rate seen at the output of the Multiplexer
Boards is 32 Singles Event Words (four for each of the eight Multiplexer Boards) per Time Slice, or approximately
320 million Singles Event Words per second. Similarly, the Coincidence Unit can theoretically identify 448
Coincident Events per Time Slice (16 for each of the 28 Detector Unit—Detector Unit combinations), which
corresponds to 4.48 billion Coincidence Event Words per second. In practice, the maximum event rate is limited
by the transfer rate between the Coincidence Unit and the Host PC, which is considerably slower.

1.3.1System Clock

The System Clock is an 80 MHz clock. In general, it is generated on the Support Board in the Coincidence Unit
(although it can be generated on the Support Board in a Detector Unit such as in the Small System), and then
buffered through the rest of the system. Propagation delays will introduce skewing, therefore each FPGA that
outputs data will also output a copy of the System Clock that is synchronized with its output data signals. In
general, each board in the system regenerates the clock using a phase-locked loop (PLL) in order to maintain
signal quality and to minimize phase drift.

~

penPET h e)

BERKELEY LAB

Timing Signals

Short Event Word Mode
(Time Slice Boundary Every 8 Clock Ticks)

SystemClock U U U U U U U UL
(80 MHz)

Slice Boundary -/ 1 I

Long Event Word Mode
(Time Slice Boundary Every 16 Clock Ticks)

Slice Boundary - | 1

Figure 7: System level timing signals.

1.3.2Time Slice Boundary

The rising edge of the Time Slice Boundary defines the beginning of a Time Slice. The width of the pulse is one
System Clock cycle, and the period is eight System Clock cycles . In general, it is generated on the Support
Board in the Coincidence Unit (although it can be generated on the Support Board in a Detector Unit such as in
the Small System), and then buffered through the rest of the system. Propagation delays will introduce skewing;
therefore each FPGA that outputs data will also output a copy of the Time Slice Boundary that is synchronized
with its output data signals.

1.3.3Time Slice

The system divides time into small, fixed length Time Slices (100-200 ns or 8-16 clocks). All individual data
processing operations must occur within a single Time Slice, which implies that only Single Event Words that
occur in the same Time Slice can be combined to form a coincident event. While it can take significantly longer
than one Time Slice to fully process a single event, the system is pipelined so that the processing is divided into
smaller operations that each can be completed in a single Time Slice. It takes one Time Slice to transfer a Singles
Event Word.

1.4 Firmware and Software Structures

The OpenPET firmware and software structures are based on a computer network tree topology. The
configuration strategy needs to fulfill the following two basic requirements:
(1) Compatibility with different types of detector modules (e.g. single analog channel addressing, single
crystal addressing for a conventional block detector, etc.);
(2) Compatibility with different sized systems (e.g., Small, Standard and Large Systems).
In addition, the addressing strategy needs to be implementable, flexible and reliable.

1.4.1Large System

As shown in Figure 8, the basic characteristics of the OpenPET tree topology for a Large System (Section 1.2.3)
are:
(1) The host computer is the central 'root' node (the top level of the hierarchy);

~

penPET b e)

BERKELEY LAB

(2) The host computer is connected to a Coincidence Unit Controller (CUC) node that is one level lower in
the hierarchy (i.e., the second level) with a point-to-point link.

(3) The CUC node is connected to up to 8 Multiplexer Board (MB) nodes that are one level lower in the
hierarchy (i.e., the third level) with point-to-point links.

(4) The MB node is connected to up to 8 Detector Unit Controller (DUC) nodes that are one level lower in the
hierarchy (i.e., the fourth level) with point-to-point links.

(5) The DUC node is connected to up to 8 Detector Board (DB) nodes that are one level lower in the
hierarchy (i.e., the fifth level) with point-to-point links.

(6) The DB node supports 16 or 32 analog channels which can either be addressed individually or addressed
in groups (e.g. 4 channels for one conventional block detector)

The firmware and software structure for a Large System is shown in Figure 9.There are four types of software
code and seven types of firmware code run in a complete Large System:

Software:
(1) Software that runs in the Host computer
Function: top level system configuration and calibration, data acquisition and analysis.
(2) Software that runs in the CUC NIOS Il p-processor;
Function: CUC SB board monitoring and management, coincidence pair configuration;
(3) Software that runs in the MB (hardware to be determined);
Function: MB board monitoring and management, multiplexer configuration;
(4) Software that runs in the DUC NIOS Il p-processor;
Function: DUC SB board monitoring and management, DB board configuration, calibration, monitoring
and management.

Firmware:
(1) Firmware for CUC main FPGA (Altera Cyclone Ill EP3C40F780)
Function: CUC SB board monitoring and management, coincidence pair configuration;
(2) Firmware for CUC IO FPGA 1 and 2 (two identical FPGAs, Altera Cyclone 11l EP3C40F780)
Function: CUC command/status flow and high-speed dataflow router;
(3) Firmware for MB (hardware to be determined)
Function: MB monitoring and management, multiplexer configuration, MB command/status flow;
(4) Firmware for DUC main FPGA (Altera Cyclone Ill EP3C40F780)
Function: DUC SB board monitoring and management, DB board configuration, calibration, monitor and
management.
(5) Firmware for DUC 10 FPGA 1 and 2 (two identical FPGAs, Altera Cyclone IIl EP3C40F780)
Function: DUC command/status flow and high-speed dataflow router;
(6) Firmware for DB FPGA
Function: ADC control, energy calculation and correction, crystal decoding, energy threshold, TDC, time
correction and etc.;

~

penPET ’ i

BERKELEY LAB

Host computer

Coincidence Unit

MBI

MB2

MB3 MB4

MBS

MB7

DUCO

DUC1

DucC2

DUC4

DUCS

DUC6

DucC7

DBO0

DB1

DB2| \DB3| |DB4| \DB5| |DB6

DB7

Figure 8: Tree network topology of an OpenPET Large System. A Coincidence Unit Controller (CUC)
that supports 8 Multiplexer Boards is housed in a crate with a power supply. The assembled unit is
called a Coincidence Unit. A Detector Unit Controller (DUC) that supports 8 Detector Boards is also
housed in a crate with a power supply. The assembled unit is called a Detector Unit. One Coincidence
Unit fans out to up to 64 Detector Units. The hardware of the CUC and DUC are the same (Support
Board). The differences are the firmware and software configurations.

penPET

16

~

A
frrereee ‘m

BERKELEY LAB

Host computer software

Host Computer

Coincidence Unit

‘ CUC software run in Nios Il CPU ‘

CUC firmware for 3 FPGAs
cucC

MB software run in Nios Il CPU ‘ ‘ MB software run in Nios Il CPU

(N N (N N (N N
MB firmware for 1 FPGA MB firmware for 1 FPGA
MB# MB#
L L R o R R A X (]
']]]
5 : : :
L} L} (]

E DUC software run in Nios Il CPU || |s i| || DUC software run in Nios Il CPU || | »
000 | 000 ! L
! SB firmware for 3 FPGAs ' ' SB firmware for 3 FPGAs '

[} (]

: DUCH[! ; DUCH !

: : : :

1 : H :

']]]

' ']]

: : 1 :

' ']]

H ' 1 :

] n N N = '

o0 .E DB firmware (1 FPGA) E oo E DB firmware (1 FPGA) E. [N)
[} (] (]

; DB# ; ; DB# :

: : H 1
' '] '

; Detector Unit ; ; Detector Unit ;

Figure 9: Firmware and software structure for a Large System.

1.4.2Small System

As described earlier (Section 1.2.1), the OpenPET system can also be configured as a Small System. In a Small
System, a support board is configured as a Coincidence Detector Unit Controller (CDUC), which interfaces with
the detector boards and performs coincidence functions. Basically the CDUC performs the functions of both the
CUC and DUC. The initial firmware and software for the first release has been developed for a Small System. The
configuration for a Small System is shown in Figure 10.

~

penPET " e)

BERKELEY LAB

Host computer
i

Coincidence and
Detector Unit

CDUC

DBO| |DB1| |DB2| DB3| |DB4| DBS5| |DB6| |DB7

CHO| CHl| ®© @ @ |[CH30| |CH3I

Figure 10: The tree network topology for a Small System. A CDUC performs the functions of both the
CUC and DUC.

The firmware and software structure for a Small System is similar to that shown in Figure 9. There are two types
of software code and three types of firmware code run in a complete Small System:

Software:

(1) Software that runs in the Host computer (the same as the in a Large system)
Function: top level system configuration and calibration, data acquisition and analysis.

(2) Software that runs in the CDUC NIOS Il y-processor;
Function: CDUC SB board monitoring and management, coincidence pair configuration, DB board
configuration, calibration, monitoring and management;

Firmware:

(1) Firmware for CDUC main FPGA (Altera Cyclone Il EP3C40F780)
Function: CDUC SB board monitoring and management, coincidence pair configuration, DB board
configuration, calibration, monitoring and management.

(2) Firmware for CDUC 10 FPGA 1 and 2 (two identical FPGAs, Altera Cyclone Ill EP3C40F780)
Function: CDUC command/status flow and high-speed dataflow router;

(3) Firmware for DB FPGA
Function: ADC control, energy calculation and correction, crystal decoding, energy threshold, TDC, time
correction and etc.;

~

penPET b e)

BERKELEY LAB

2 Getting Started — Small System Oscilloscope Mode
2.1 Getting the Hardware

The OpenPET system uses a custom Support Crate that is similar to a VME crate (see Section 1.1.1). Support
Crates should be purchased through Elma: Support Crate Chassis, part number 12V12XXX78N2VCGX-LBL,
http://www.elma.com/en/us/.

The OpenPET PC boards can be purchased from Terasic through their OpenPET website at
http://www.openpet.terasic.com. For a small system in the first release, each Detector Unit (see Section 1.1.2)
requires the following OpenPET boards:1 Support Board

* 1-8 16-Channel Detector Boards

You also need the following additional components:
* 1 host PC with a Windows 7 operating system.
* 1 QuickUSB module: Bitwise Systems, part number QUSB2, http://www.bitwisesys.com/qusb2-
p/qusb2.htm.
* 1 standard USB cable
e 1 USB-Blaster Cable: Terasic, Digi-Key part number P0302-ND, http://www.digikey.com/product-
highlights/us/en/terasic-usb-blaster-cable/3718.

The QuickUSB module is a small PC board that contains circuitry to provide high-speed USB 2.0 capability. It is
plugged into either the Host PC Interface Board or the Support Board. The USB-Blaster cable interfaces between
a USB port on the host PC to the Altera main FPGA on the Support Board, so configuration data can be sent from
the PC to the FPGAs. More detailed instructions are provided in the following sections.

2.2 Assembling the Hardware

Once you receive the parts for an OpenPET support crate, some minor assembly is required. Figure 11 shows the
two main components: the empty Support Crate and the Support Board. In addition, you will receive a small
custom jumper board (see Figure 12c). You will also need a standard power cable for the crate, M2.5 x 12 mm
Phillips head screws, M4 x 5 mm Phillips head screws, and appropriate screw drivers.

The first assembly step is to attach the Support Board to the crate. From the back side of the crate, align the
screw holes on the Support Board to those on the Support Crate and secure it using M2.5 x 12 mm Phillips head
screws. We recommend using at least 3 screws on the top, middle and bottom rows. It is also useful to place a
piece of paper across the fans during assembly so any dropped screws don't fall into them. When the board is
properly aligned, there should be about a 4 mm gap between the right edge of the Support Board and the right
side of the Support Crate (Figure 12a).

~

penPET h e)

[BeErkELEY LAS]

(b)
Figure 11: (a) Empty Support Crate viewed from the front. (b) Support Board viewed from the front.

Once the Support Board is secured on the crate, you need to attach the power cables. The power cables and
Support Board connectors are labeled. From bottom to top, the power cables are -5 V (orange cable), ground
(black cables), +3.3 V (purple cables) and +5 V (red cable), as shown in Figure 12b. Secure these power cables
on to their respective Support Board connectors using M4 x 5 mm Phillips head screws. You may need to feed
each screw through the power cable lug nut before attaching it to the Support Board, since the lug nuts fit tightly.
In addition, there is a small bundle of cables that can be used for monitoring but these cables are not needed.

Finally you need to plug the custom small jumper board into the back of the Support Board. It plugs in to the
connector just to the right of the Jtag connector (see Figure 12c¢). Specifically, board plugs into the left column of
pins on the connector (which is marked main, 58, 62, 65, 68). This jumper board identifies that the Jtag should
communicate with the main FPGA on the Support Board.

The fully assembled Support Crate is shown in Figure 13.

(b)

Figure 12: (a) Close up of the small gap (~4 mm) between the Support Crate and the edge of the
Support Board when assembled properly. (b) Close up of the power cables attached to the back of the
Support Board. (c) Close up of the jumper board plugged into the back of the Support Board.

penPET ” s)

BERKELEY LAB

(b)
Figure 13: The assembled OpenPET Support Crate viewed from the (a) front and (b) back.

2.3 Downloading the Software and Firmware

2.3.1Installing QuickUSB

The OpenPET system requires the use of a QuickUSB module to provide high-speed USB 2.0 capability. You can
purchase this online through Bitwise systems at http://www.bitwisesys.com/qusb2-p/qusb2.htm (product code
QUSB2). In addition to the hardware module, this includes the QuickUSB library with a driver, interface DLL, and
example programs for Linux, MacOSX and Windows. In addition, you will need a USB cable. However, you do not
need to buy the QuickUSB Adapter Board as Bitwise implies.

First, you need to mount the QuickUSB module onto either the Host PC Interface Board in the U3 connector or
onto the Support Board in the U6 connector (Figure 14). The system is designed to work with the QuickUSB
module mounted in either (but not both) of these locations.

Note: During the first release, the Host PC Interface Board is not supported yet. So you need to mount the
QuickUSB module onto the Support Board (Figure 14b).

QuickUSB Module

(a) (b)
Figure 14: QuickUSB module mounted onto the (a) Host PC Interface Board or (b) Support Board.
Next, you need to install the QuickUSB driver onto your host PC. Browse and select the setup executable for the

QuickUSB software (e.g., Desktop = QuickUSB_Installation - Windows > setup.exe). This will launch the
InstallShield Wizard in a new window (Figure 15a). Step through the instructions by clicking the Next button at the

BERKELEY LAB

penPET i |

bottom, agreeing to the software license agreement terms and defining the folder where the QuickUSB software
should be installed (Figure 15b). When the wizard is ready to begin installation of the library, click Install (Figure
15c¢). The installation takes a few minutes and a status bar shows the progress. An additional window will then
pop up that walks you through the installation of the QuickUSB device drivers (Figure 15d). The InstallShield
Wizard will indicate when the full installation is completed.

If you have further questions or problems with the installation, please refer to the Bitwise QuickUSB User Guide
for details (e.g., http://www.bitwisesys.com/v/public/media/QuickUSB_User Guide v2.15.2.pdf).

Once you have installed the QuickUSB module, you need to program it with the correct firmware using the
QuickUSB Programmer (see Figure 16). After you have successfully installed the correct firmware, you can
confirm your installation by running the QuickUsb Diagnostics (see Figure 17). The OpenPET system requires the
firmware model “QuickUSB QUSB2 Module v2.15.1 (Block Handshake)” to configure the QuickUSB module for
the correct data transfer mode. For further details on this firmware model and configuration, please refer to the
QuickUSB User Guide at http://www.bitwisesys.com/v/public/media/quickusb_user guide.pdf.

15! Bitwise Systems QuickUSB Library v2.15.1 - In ,l’@Wi&Ah;m v2.15.1 - InstallSh

= Destination Folder
Welcome to the InstallShield Wizard for
Bitwise Systems QuickUSB Library v2.15.1 Click Next to install to this folder, or dick Change to install to a different folder.
3 N Y — . (G Install Bitwise Systems QuickUSB Library v2.15.1 to:
The InstallShield(R) Wizard will install Bitwise Systems QuickUSB § g Files\Bitw ickUsb
Library v2.15.1 on your computer. To continue, dick Next. C:\Program Files \Bitwise Systems\Qui \
WARNING: This program is protected by copyright law and
international treaties.
InstaliShield
<Back [WNext> [Cancel | <gack J{ Next> | [Cancel

Bitwise Systems QuickUSB

5! Bitwise Systems QuickUSB Library v2.15.1 - InstallShield Wizard

Ready to Install the Program Bitwise Systems QuickUSB Driver

v2.15.1

This wizard will walk you through installing the Quick USB
device drivers

The wizard is ready to begin installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

Current Settings:

Setup Type:
Typical
Destination Folder:
C:\Program Files\Bitwise Systems\QuickUsb\

User Information:
Name: senq
Company:

To continue, click Next.

InstallShield

[<Back | Instal | [Cancel] Cancel

(c)) L etz])|

Figure 15: Bitwise Systems QuickUSB Library v2.15.1 InstallShield Wizard: a) welcome window, (b)
destination folder window, (c) installing the library window, and (d) installing the driver window.

penPET ’]

' QuickUSB Programmer &)
File Options Help
—~General
Module QUISE-0 =
Description |QuicklUSE QUSE2 Module v2.15.1 (Block H
Public SN 6382
Private SN 6382
|

Figure 16: QuickUSB Programmer used to program the QuickUSB module with the correct firmware:

QuickUSB QUSB2 Module v2.15.1 (Block Handshake).

QuickUsbDiagCs v2.15.1 [E=REE
File Help
|| Name Serial Fimware Version Fi Model

QuickUSB Modules
| QUSB-D 6076 2.15.1

QuickUSB QUSB2 Module v2.15.1 (Block Handshake)

General |Command | Data | Pots | RS232 | SPI | EPCS | I2C

| Settings | Defaus |

General
Serial Number: 6076

Description: CY7C68013A Rev A (EZ-USB FX2LP)
HW Version: QuickUSB QUSB2 Module v2.15.1 (Block Handshake)
USB Speed: () Low-Speed (12 Mbps)
@ High-Speed (480 Mbps)
FPGA
FPGA File: Browse
FPGAType: @ AtteraPS () Xilinx SS Is Configured? Upload

[Repeat last action every 1000 %‘ ms

Figure 17: QuickUsb Diagnostics used to confirm the QuickUSB module with the correct firmware:

QuickUSB QUSB2 Module v2.15.1 (Block Handshake).

23

penPET

=
A
freeeee

BERKELEY LAB

2.3.2Installing Altera Tools

Even if you only plan to use the off the shelf OpenPET software and firmware, the OpenPET system requires the
use of Altera design tools in order to load the appropriate firmware into the Support Board. These tools can be
downloaded for free from the Altera Download Center website (e.g., https://www.altera.com/download/sw/dnl-sw-
index.jsp, Figure 18a). From the Download Center, select to download the Quartus Il Web Edition that is free and
doesn’t require a license.

On the Quartus Il Web Edition download page Figure 18b, select release: 13.1 select the Windows operating
system and the Akamai DLM Download Manager. Under the Individual Files tab, select the Quartus Il Software
and the Cyclone lll, Cyclone IV device support. You can select additional options (such as the ModelSim-Altera
Edition simulation tools), but they are not required to run OpenPET and they will lengthen the download time.

At this time, only Altera Quartus 13.1 is supported.

You are then required to log in with your username and password if you already have a myAltera account. If not,
then create an account using your email address and complete the account registration information. Once your
myAltera account has been created, you will be directed to your myAltera Home page. Select the Download
Center link on the top right side of the page.

Once you have returned to the Download Center (Figure 18a), select the Quartus Il Web Edition and specify the
Windows operating system, DLM Download Manager, Quartus Il Software, and the Cyclone lll, Cyclone IV device
support (if they aren’t already specified). A separate Akamai NetSession Interface window will then pop up (Figure
18c¢) in which you should click Download on the installer and then Run to proceed with the software installation.
You will have to agree to the End User License terms. A popup warning message will then appear in which you
have to confirm that you want to open the executable file (e.g., QuartusSetupWeb-13.10.163.exe) from the
Internet. You will then have to confirm that you want to allow this program to make changes to your computer
(Figure 18d).

Finally the Quartus Il Web Edition Setup Wizard window will appear and step you through the installation (Figure
18e). You will have to agree to a License Agreement again as well as specify the installation directory (e.g.,
C:\altera\13.1). Then you should make sure that the components selected for installation are correct (e.g.,
Quartus Il Software and Cyclone 11l/1V) and that you have the available disk space specified in the Summary.
Once you start the installation, a status bar will show its progress. Once the Setup has finished installing the
Altera tools, you can create shortcuts on your Desktop and launch Quartus Il (Figure 18f).

If you have further questions or problems with the installation, please refer to the Altera support website
(http://www.altera.com/support/spt-index.html) for user information. For specific instructions on how to use these
Altera tools with the OpenPET system, see Section 2.3.4.

2.3.3Installing USB-Blaster Driver

The USB-Blaster cable interfaces between a USB port on your host PC and the Altera main FPGA on the Support
Board. It allows configuration data to be sent from the host PC to the FPGAs.

You must install the Altera USB-Blaster or USB-Blaster Il driver before you can use the program devices with the
Quartus Il software. These drivers are automatically copied to the drivers folder within the Altera folder during the
installation described in the previous section. However, it needs to be installed at first use. You will be prompted
to install the driver the first time the USB-Blaster cable is plugged in. Whether you need to install the USB-Blaster
or USB-Blaster Il driver depends on your cable. Please see the step-by-step Altera instructions for this driver
installation at http://www.altera.com/download/drivers/usb-blaster/dri-usb-blaster-vista.html.

~

penPET . i

BERKELEY LAB

Download Center » Documentation & myAltera / Logout

AOERA. 3O s

Download Center) Documentation & myAltera Account MEASLABLE ATANTAGE™

MEASURABLE ATNANTAGE™
“Devices Design Tooks & Services wEnd Markets wTechnology Training Support About Buy
uDevices Design Tools & Services End Markets Technology Training wSupport wAbout % Buy

et Quartus Il Web Edition
Design Software Querts If Subseripton Edton
Quartus 1t Susseription eaion DOWNIoad Center « > Support > Dowrieads >
Quartus I Wieb Edition farne > Suppart > Dosaioas > esscere i cary
MegaCore IP Library o -
e Get the complete suite of Altera design tools Nios 11 EDS Legacy Toals \\§
ModelSim-Aera Starter S

05P Buider
Altera SOK for OpenCt
05 Support

Embedded Software

s \\(\:

Archives

Service Pocks
Design Software

device famities: sl Cyclone 11, Cyclone IV, MAX
Compare ModelSim-Altera
Mo

Licensing
Get and Manage Licenses

University Software

Uce
Ucense Daemon Software

Orivers
Cabie & Adapter Drivers

Board System Design
Neve
SPICE Models

e Quartus 11 software instalstion fie.

‘e Additionsi Software tab. Save the fies to

ModelSim ¥ | Altera®SDK o OpenCL” J§
Modesim-Attars sof
Alera's " of Mo e. G re Development Kit tomaticaly installed;

Board Layout and Test
BSOL Models

Quick Start Guide

\#SoCEDS ¥ | (74 DSPBuilder A 4

Mentor Graphics PCB Libraries
erber Fle B Quartus 11 Web Edition (Free)

Gerber Pl 5P Builder C A~

Logacy Softwars He ten digital signal processing (I Quartus 11 Software (includes Nios I £0S) uPbATE

MAX4PLUS T

Other Legacy Software ModeiSim-Alters Edition (includes Starter Edition)

stall device support for atleast on device family to use the Quartus I saftware.

Software Selector

seeceiy verson (L IR

Quartus Software

Arria 11 device support
I Cyclone I11, Cyclone IV device support (includes il varistions)

Loading e Sppenad Do Cycane V device suppart (inciudes sl varistions)

(a) (b)

MAX I1, MAX V device support

- . . <, r h
€. Akamai NetSession Interface 1% @ User Account Control Ld_:?-,l

To complete this download, you need to install the Akamai NetSession Interface, a
download manager used to reduce download time and increase quality. This install should
take only a few minutes at most, after which your download can resume.

Do you want to allow the following program from an
unknown publisher to make changes to this computer?

Please take the following steps:
1. Download the installer by clicking the link below. Program name: QuartusSetup\Web-13.1.0.162.exe
2. Run the downloaded installer - it will set up the NetSession Interface Publisher: Unknown

3. When the install has completed, this popup will close and the download will resume in File origin: Hard drive on this computer
the browser window.

Click here to begin: download the installer. - 1
V) Show details Yes] i No

If you have questions or want more information about Akamai NetSession Interface,

please visit our home page.
Change when these notifications appear

If you cannot complete the installation, click here.

(c) (d)

Viekcome t the Quarts

For more nformaton about Atera software, 00 to hto:/f

(e) —1 ()

Figure 18: Altera Tools installation windows: (a) download center window, (b) Quartus Il Web Edition
window, (c) Akamai NetSession Interface window, (d) User Account Control confirmation window, (e)
Quartus 1l Web Edition Setup Wizard window and (f) Altera Nios2 Command Shell window.

enPET 2

2.3.4Installing OpenPET Firmware & Software

Download onto your host PC the latest version of the OpenPET firmware and software “Binary” zip from the
OpenPET website at http://openpet.Ibl.gov/downloads/firmware-software/. You will need to register as an
OpenPET user and login before you can access this page. Once you unzip this file (e.g., OpenPET_v1.0.zip), you
should see the OpenPET_ROOT directory, as shown in Figure 19.

Organize v Include in library « Share with v Burn New folder

. OpenPET_v1.0 -
, v10
.. detectorboard
.. 16ChLBNL
. bin

., detectorboard
. hostpc

. supportboard

|| -hg_archival.txt

|_|-hgtags
B _|README
. bin

.. inc
, lib

. supportboard
. bin

6 items

Figure 19 OpenPET Directory Tree (OpenPET_ROOT)

The directory ‘OpenPET_ROOT/supportboard’ contains the Support Board’s firmware, as well as an additional
script to program the board’s flash.

The directory ‘OpenPET_ROOT/detectorboard’ contains the LBNL 16-channel Detector Board’s firmware and a
script to program the flash. Future releases will also include other Detector Boards.

The directory ‘OpenPET_ROOT/hostpc’ contains three subdirectories: inc, lib and bin. The ‘inc’ and ‘lib’
subdirectories contain the header and library files for the OpenPET QuickUSB interface. The ‘bin’ subdirectory
contains the two executables needed to interface with the QuickUSB modules. Please add this directory to your
MS Windows PATH environment variable. (You will have to do this every time a new OpenPET binary package is
released.) Open a Windows Control Panel and type ‘env’ in the search box in the upper right corner as shown in
Figure 20, then click on ‘Edit environment variables for your account’. When the new popup window appears, go
to user variables, double click on the variable ‘PATH’, and append the full path to variable value (see Figure 21).

penPET * |

BERKELEY LAB

5|3 > Conrolpanel > < [ésflem
w“. System
-

Edit environment variables for your account
@) Edit the system environment variables

@Search Windows Help and Support for "env"

Fiure 20 Windows Environment Variable through control pael

Environment Variables

User variables

Variable Value

PATH %CDSROOT % \tools\bin; %CDSROOT %...
QSYS_ROQTDIR C:\altera\13. 1\quartus\sopc_builder\bin
QUARTUS_ROO... C:\altera\13.1\quartus

QUICKUSB_DIR C:\Program Files (x86)\Bitwise Systems\...

[mew.. |[Edt. |[Deete

Edit User Variable [

Variable name: PATH

Variable value: 9%CDSROOT % \tools\bin; %CDSROOT % \toc

[ok

Figure 21 Setting the PATH environment variable

2.3.4.1 Programming OpenPET flash Images

Before we program the flash images on the Support Board, we have to setup some jumpers. First make sure the
Support Crate is powered off and disconnected. Place jumpers on each Detector Board, connecting pins 1 and 2
on J1, J2 and J3, so you can download firmware to the Detector Board (Figure 22 (a)) using the instructions
below. (Note: code can also be downloaded via the JTAG connector, which is still enabled with theses jumpers in
place.)

Connect the USB-Blaster hardware from the back of the Support Board to your host PC (USB port), as shown in
Figure 22 (b); pin 1 (marked as red) should face down when connecting to the JTAG connector.

penPET i

EEEEEEEEE

Egcu uh
Q‘WJ! 3

EE :cEEEE 33

(b)

Figure 22: (a) Detector Board with jumpers installed on pins 1 and 2 for J1, J2 and J3. (b) USB-Blaster

plugged into the JTAG connector on the back of the Support Board. A custom jumper board is also
shown.

After plugging in the cable, connect and turn the power on to your Support Crate. Now you are ready to download
the OpenPET software and firmware to your OpenPET hardware in two steps:

* In the first step, you download the OpenPET software and firmware to the 3 FPGAs on the Support
Board. Go to OpenPET_ROOT/supportboard and launch flashboard.bat (Type = Windows Batch file).
Please follow the prompts on the command line window. The result is shown in Figure 23. Once this is
done, it is important that you reboot the crate by turning it off then on again.

EX Altera Nios I EDS 13.1 [gccd]

[OpenPET]1 Do you want to program the support hoard? Make sure USB-Blaster is con|N
nected. [y/nl y

[OpenPET] Running “quartus_pgm —c ush-hlaster —m jtag —o ipv;./bin/supporthoard.

[OpenPET] Done
[OpenPET 1 Press ter] to close this window

Figure 23 Support Board flash programming script

penPET " o

BERKELEY LAB

* In the second step, you download the OpenPET firmware to the Detector Board FPGA. Go to
OpenPET_ROOT/16ChLBNL/detectorboard and launch flashboard.bat (Type = Windows Batch file).
Please follow the prompts on the command line window. The result is shown in Figure 24. When done, it
is important that you reboot the crate by turning it off then on again.

Caution: You cannot program the detector board flash before programming the Support Board.

Altera Nios I EDS 13.1 [gccd] a3

[OpenPET]1 Do you want to program the detector hoard? -
[OpenPET]1 If you want to program the detector bhoard, you should have programmed
the SupportBoard’s flash and rebooted it. Have you programmed the SupportBoard?
[y/n]l y

Is a single USB-Blaster connected? [y/nl y

[OpenPET]1 Running “nios2-flash—programmer —-e ——hase=0xB8 ./bhin/DetectorBoard.fla
sh"

"USB-Blaster [USB-B1", device 1, instance Bx80
Resetting and pausing target processor: OK

Checksummed/read 28kB in @.6s

Erased 384kB in 3.8s (101.8kB/s)>

Programmed 357KB +27KB in 5.7s (67.3KB/s>

Did not attempt to verify device contents

Leaving target processor paused

[OpenPET 1 Done programming flash. Please rebhoot chassis.
[OpenPET1 Press [Enter] to close this window_

Figure 24 Detector Board flash programming script

2.4 Running a Small System in Oscilloscope Mode

There are two basic executables that can be used to setup and run an OpenPET Small System using USB to
communicate with the host PC:

¢ opet_cmd_usb.exe command ID, target address, command payload, timeout, USB module number

* opet_acq_usbh.exe DAQ time, filename, USB module number.

Prior to running the system with these executables, you need to have the Small System hardware configured,
powered on and loaded with the correct OpenPET firmware and software (see Sections 2.2 and 2.3). You also
need to plug in a QuickUSB cable to connect the host PC (USB port) with either the Host PC Interface Board
(plug into USB port on the front panel) or Support Board (plug into QuickUSB module directly on SB in back of
crate). These executables are issued from a standard terminal window from your working directory folder.

2.4.1Commands

Every OpenPET system command also has an associated response. Both commands and responses (C/R) have
the format shown in Figure 25. There are four segments of information required: command/response id (16 bits),
source address (16 bits), target address (16 bits), and command/response payload (32 bits).

The command/response id specifies the function of the command, using a 16-bit number with the most significant
bit (C/R flag) as 0 for a command and 1 for a response. The source address is a 16-bit number that defines where
the command/response originates. Commands originate in the host PC, which has source address 0xF000. The
target address is a 16-bit number that identifies where the command/response should be received and processed.
Typically commands for a small system have a target address of 0x4000 for the CDUC. The C/R data payload is
a 32-bit number that specifies additional information for each command. See Section 5 for further details.

~

penPET ® e)

BERKELEY LAB

Format of the OpenPET System Commands and Responses:

C/RID Source Address Target Address C/R Data Payload
{16 bits) (16 bits) (16 bits) (32 bits)

Format of the Command and Response ID (C/R ID):

C/R node type (4 bits) C/R function tyipc (10 bits)
1"

r \)
lislu]]e|ufw|ofs|7[es[a]3]2]1]0]
1 1

C/R flag Std/User C/R flag

Format of the Source and Target Address:

Node lyp‘c (4 bits) Absolute addri‘ss (12 bits)

[1 [
|15||4||3||2||1||0|9|x|7|()

....... S SO ——
Reserved DB address DUC address ~ MB address

<

5 | 4 I 3|2 I 1 | 0
‘ Y ' ¥
Figure 25: OpenPET address formats. Bits shown in white are not used.

The executable opet_cmd_usb.exe is used to control the system. In particular, it is used to send a command to
target hardware that provides a response. The command executable has several arguments:

opet_cmd_usb command ID, target address, command payload, timeout, USB module number

The opet_cmd executable arguments are summarized below:

¢ Command ID: 16 bits
» (See Table 1)

* Target address: 16 bits
» Coincidence Detector Unit Controller: 0x4000

¢ Command payload: 32 bits
» (See examples in Section 5)

* Timeout: units of milliseconds, default 200, integer range -30,000 to 30,000

* USB module number: default 0, integer range 0-7

Tables 1 and 2 show a list of the current OpenPET commands, including their command id and a brief description
of their function. See Section 5 for more details, including many command examples.

penPET ; —i]

Command ID Command Name Command Function

(Response ID)
0x2200 Boot-up Detector Boards Loads the FPGA configuration to all Detector Boards.
(0xa200)
0x2201 Set system data mode Configures the system data mode. At present, only
(0xa201) Oscilloscope data mode is implemented.
0x2202 Read system data mode Reads the system data mode.
(0xa202)
0x2203 Set Oscilloscope data settings Configures the Oscilloscope mode data settings. Can
(0xa203) specify data format and number of ADC samples per

channel.

0x2204 Read Oscilloscope data settings Reads the Oscilloscope mode data settings.
(0xa204)
0x2205 Set trigger mask (channels 0-15) Configures the trigger mask. Can enable/disable
(0xa205) trigger for channels 0-15 for a single DB or all DBs.
0x2206 Set trigger mask (channels 16-31) Configures the trigger mask. Can enable/disable
(0xa2086) trigger for channels 16-31 for a single DB or all DBs.
0x2207 Read trigger mask (channels 0-15) | Reads the trigger mask for channels 0-15 for a single
(0xa207) DB.
0x2208 Read trigger mask (channels 16-31) | Reads the trigger mask for channels 16-31 for a single
(0xa208) DB.
0x2209 Clear event FIFO Clears the event FIFO to remove data from previous
(0xa209) events.

Table 1: Summary of the OpenPET commands for universal tasks.

Command ID Command Name Command Function
(Response ID)
0x2400 Send sawtooth test pulse Sends a sawtooth test pulse signal to all DACs on a
(0xa400) single Detector Board. Can specify which DB and the
number of sawtooth waves.
0x2401 Initialize DAC Initializes DACs registers with default values. Can
(0xa401) specify a single DB or all DBs.
0x2402 Set DAC voltage Sends a single voltage signal to DACs on a single
(0xa402) Detector Board. Can specify which DB, DAC type,
DAC channels and voltage value.
0x2403 Initialize ADC Initializes ADCs registers with default values. Can
(0xa403) specify a single DB or all DBs.
0x2404 Set ADC gain Set ADC gain in a single Detector Board. Can specify
(0xa404) gain, which DB, and a single channel or all channels.

Table 2: Summary of the OpenPET commands for DB/hardware specific tasks.

Instead of using this command executable, users can use an optional control and analysis tools package based
on the ROOT framework, called OpenPET Control and Analysis Tools (OpenPET CAT). See Section 6 for further
details on how to install and use OpenPET CAT.

~

penPET i e)

BERKELEY LAB

2.4.2Data Acquisition

The opet_acq_usb.exe executable is used to acquire data, after the system is correctly initialized. The acquisition
executable has a few arguments:

opet_acq_usb DAQ time, filename, USB module number.

The specifications of these arguments are outlined below:
¢ DAQ time: acquisition time in seconds.
* Filename: filename for acquired data.
* USB module number: default=0, integer range 0-7.

An example acquisition executable is opet_acq 30, File1.dat, 0 that collects data from the CDUC through the
QuickUSB block 0 for 30 seconds and saves the data to file File1.dat.

Instead of using this data acquisition executable, users can use an optional control and analysis tools package
based on the ROOT framework, called OpenPET Control and Analysis Tools (OpenPET CAT). See Section 6 for
further details on how to install and use OpenPET CAT.

2.4.3Example System Setup & Data Acquisition

The sections above describe the two OpenPET executables needed to setup the system and acquire data.
However, the use of these executables and their commands are order sensitive. So this section outlines an
example of how to use the executables to initialize the system and take test data, in order to help determine
whether your system is working properly. More information on diagnostic testing is also available in Section 9.2.

» We list here an example string of commands — see Section 5 for more details. All of the commands
below use a USB module number of 0. The recommended response time out for each command is
listed below (200 ms — 3000 ms). Figure 26 shows an example data file generated from the last
command (opet_acq 30, TestData1.dat, 0); see Section 2.5 for more details.

» opet_cmd_usb 0x2200, 0x4000, 0x00000000, 3000, O
Boot-up DBs: loads the FPGA firmware with default values to all connected Detector Boards.
Correct response: 0xa200, 0x4000, 0x0

» opet_cmd_usb 0x2403, 0x4000, 0x00000000, 1000, O
Initializes all the ADC registers with default values for the Detector Board in slot 0.
Correct response: 0xa403, 0x4000, 0x30000000

» opet_cmd_usb 0x2404, 0x4000, 0x00000106, 1000, O
Sets the ADC gain to 6 dB for all ADCs on the Detector Board in slot 0.
Correct response: 0xa404, 0x4000, 0x30000106

» opet_cmd_usb 0x2401, 0x4000, 0x00000000, 200, 0
Initializes all the DAC registers with default values for the Detector Board in slot 0.
Correct response: 0xa401, 0x4000, 0x30000000

» opet_cmd_usb 0x2402, 0x4000, 0x00602150, 200, O
Sets all DACs to +2.150 V for all channels on the Detector Board in slot 0.
Correct response: 0xa402, 0x4000, 0x30602150

» opet_cmd_usb 0x2205, 0x4000, 0xO000FFFF, 200, 0
Enables the trigger for channels 0-15 for the Detector Board in slot 0.

~

penPET ” i

[BeErkELEY LAS]

» opet_cmd_usb 0x2201, 0x4000, 0x00000000, 200, 0
Configures the system data mode to Oscilloscope mode for all connected Detector Boards.
Correct response: 0xa202, 0x4000, 0x00000000

> opet_cmd_usb 0x2203, 0x4000, 0x02000020, 200, 0
Configures the CDUC and all connected Detector Boards with the Oscilloscope mode settings of test
communication data format and 32 raw ADC samples per channel.
Correct response: 0xa203, 0x4000, 0x02000020

> opet_cmd_usb 0x2209, 0x4000, 0xO0FOFOFO, 200, 0
Clears the event FIFO in the CDUC and all connected Detector Boards to remove data from previous
events.
Correct Response: 0xa209, 0x4000, 0xOOFOFOFO

» opet_acq 30, TestData1.dat, O
Acquires data from the CDUC through the USB module 0 for 30 seconds and saves the data to file

TestData1.dat.
Channel 0 Channel 1 Channel 2 Channel N
)| | i
| 1 | | r_lﬁ
Starting Bytes 1 { oo o9 e
and 2 00 00 OO0 8¢
00 00 00 B¢ B0 o2 ¢ (@ oo o4 20 [88]cc e 20 P Sample |
01 00 00 &c 01 00 02 8¢ 01 00 04 80 01 00 le 80
02 00 B¢ 02 ec 02 34 80 02 00 1le 8
03 03 03 24 20 03 00 le &
04 4 2 86 04 34 20 04 00 le B0
0s 0% 80 0% 24 20 05 00 le 80
o€ 0 8 o 34 80 06 00 1le 80
07 07 07 24 280 07 00 1e 80
¢ oe 02 00 04 20 08 00 1e B¢
0% 09 09 00 04 20 09 00 le B0
e 0a ¢ Oa 00 04 20 Oa 00 le B0
oe ok 0b 00 04 20 0b 00 le 20
0c Oc 0 00 04 20 0c 00 le 80
0d ¢ 0d 2 04 00 04 20 04 00 le B0
Oe e e fe 24 20 Oe 00 le 80
o e ¥4 28 (174 34 20 0f 00 le 20
10 2 0 2 16 34 20 10 00 1le 20
11 1 2 480 "ttt 11 00 1e &
12 12 02 2 34 80 12 00 le 80
13 ; 2 24 20 13 00 1le 20
14 14 28 ‘ 24 20 14 00 le 20
1 18 24 80 15 00 1le 80
1€ 1¢ 2 ¢ 4 20 16 00 1e 8¢
1 17 02 7 34 20 17 00 le B0
1 : 2 24 20 18 00 le B0
19 19 2 3 24 20 19 00 1le 20
la la a 34 80 1a 00 1e 80
1b 1k 2 k 4 80 16 00 le B0
lc 1¢ ¢ 1¢ 24 20 ic 00 le 80
id ¢ 14 28 14 24 20 1d 00 1le 20
le le 2 le 24 20 le 00 le 80
£ 1£ 2 1¢ 34 80 1200 le 8
2 ¢ 92 ¢ Y ; :: le 80 } Sample N

2 00 80 }_ Ending Byte

Figure 26: TestData1.dat example data file generated from above command sequence, with 32
samples per channel. See Section 2.5 for more details on the data format and Section 9.2 on
diagnostic testing.

penPET ; —i]

2.5 Data Analysis

The list mode data will be written to a binary file so the user can analyze it offline. The format for this list mode
data is specified in the following sections.

Users can also use an optional analysis tools package based on the ROOT framework, called OpenPET Control
and Analysis Tools (OpenPET CAT). See Section 6 for further details on how to install and use OpenPET CAT.

2.5.1Data Format

A Coincidence Detector Unit Controller has eight FIFO data buffers, one for each Detector Board. The CDUC
checks these eight FIFOs periodically to see if any have been filled. Once the event data are buffered in a FIFO,
the CDUC reads the entire event data train from the FIFO and sends it to the host PC.

When a trigger signal is detected by a Detector Board, it collects raw event data and sends them to the CDUC. If
the CDUC FIFO for the Detector Board is empty, the raw event data are buffered in the FIFO. Otherwise, the
event data are dropped.

2.5.1.1 Single Detector Board

In Oscilloscope mode, the definition of the data format is shown in Figure 27. The data train consists of two 32-bit
Starting words, a series of 32-bit raw data, and a 32-bit Ending word. The detailed format for the starting words,
raw data and ending words are specified in Figure 28 through Figure 32.

The start and end of an event data train for a Detector Board are identified using a starting flag bit and ending flag
bit, respectively. Starting word 1 sets the starting flag bit (bit 16) to “1”, and the following words in the data train
have this starting flag bit and the ending flag bit (bit 15) set to “0”. The Ending word then sets the ending flag bit to
“1”, signifying that data buffering is complete.

The raw data words are written in sequential order for a single Detector Board. For the Oscilloscope mode ADC
plus TDC data train, this means that the raw ADC data are written for the first sample of Channel 0, followed by
the second sample and so on until Sample N, and then followed by the raw TDC data for Channel 0. This is
repeated sequentially for all 16 Detector Board channels.

~

penPET ” i

[BeErkELEY LAS]

Starting bytes 2 (32 bits)

ADC data, Ch 0 Sample 1 (32 bits)

ADC data, Ch 0 Sample 2 (32 b

ADC data, Ch 0 Sample N (32 b’ltS)

TDC data Ch 0 (32 bits)

ADC data, Ch 15 Sample 1 (32 bits)

ADC data, Ch 15 Sample 2 (32 bits)

ADC data, Ch 15 Sample N (32 bits)

TDC data Ch 15 (32 bits)

Ending bytes (32 bits)

Figure 27: Definition of the Oscilloscope Mode data format for an ADC+TDC data train, where the
maximum N is 254,

Trigger hit map (channel 15)
1 MB address ~ DUC address DB address Osc. Data format Starting flag bit “1”

I S o x

|31 30|29|28 27‘26|25 24|23|22 21‘20|19‘18‘17 16

Ending flag bit “0” Trigger hit map (channel 14~0)
A

[
sl lelufo|ols|7]e|ls|a]s]2]1]o0

Figure 28: Format of the 32-bit Starting word 1 for an Oscilloscope Mode data train.

The format of Starting word 1 is specified in detail in Figure 28. The 32 bits in the first Starting word are defined
below:
e Bit 31: Data valid bit. This bit has to be set to “1”. A parent node rejects any event data with a data

valid bit set to “0” from its offspring nodes.

* Bit 30 to 28: 3 Multiplexer Board address bits. The 3-bit MB addresses are assigned and added to
the 32-bit event data in the CUC. In a system without a Multiplexer Board (a Small or Standard
system), these 3 bits can be redefined as payload bits by the users.

e Bit 27 to 25: 3 DUC address bits. The 3-bit DUC addresses are assigned and added to the 32-bit
event data in the MB (for a Large System) or CUC (for a Standard System). In a Small System, these
3 bits can also be redefined as payload bits by the users.

~

penPET » e)

BERKELEY LAB

Bit 24 to 22: 3 DB address bits. The 3-bit DB addresses are assigned and added to the 32-bit event
data in the DUC or CDUC. These 3 bits CANNOT be redefined.

Bit 21 to 18: 4-bit Oscilloscope mode data format. This 4-bit address specifies the data format for
Oscilloscope mode:

0000: ADC plus TDC data format

0001: ADC data format

0010: Test communication data format

0011: Test analog data format

0100-0111: Reserved

1000-1110: User defined data format

1111: Reserved

Bit 17: Trigger hit map (channel 15). This bit indicates whether or not channel 15 triggered.

Bit 16: Starting flag bit. This bit is set to “1” in the Starting word 1 (and “0” for the following words in
the data train).

Bit 15: Ending flag bit. This bit is set to “0” in the Starting words.

Bits 14 to 0: Trigger hit map (channels 0-14). This 15-bit address indicates whether or not channels
0-14 in the Detector Board triggered.

VVVVYVYVYYVYVY

Trigger hit map (channel 31)

1 MB address DUC address DB address Reserved Starting flag bit “0”
(_A_\ ________ A [| A
|31]30] 2028 27|26]25ﬂ21‘20\19|18[17 16
Ending flag bit “0” Trigger hit map (channel 30~16)
\

[
15|14‘13‘12|11|10‘9‘8|7|6’5‘4‘3|2’1‘0

Figure 29: Format of the 32-bit Starting word 2 for an Oscilloscope Mode data train.

The format of Starting word 2 is specified in detail in Figure 29. This Starting word can be ignored when using a
16-channel Detector Board. The 32 bits in the second Starting word are defined below:

penPET " g

Bit 31: Data valid bit. This bit has to be set to “1”. A parent node rejects any event data with a data
valid bit set to “0” from its offspring nodes.

Bit 30 to 28: 3 Multiplexer Board address bits. The 3-bit MB addresses are assigned and added to
the 32-bit event data in the CUC. In a system without a Multiplexer Board (a Small or Standard
system), these 3 bits can be redefined as payload bits by the users.

Bit 27 to 25: 3 DUC address bits. The 3-bit DUC addresses are assigned and added to the 32-bit
event data in the MB (for a Large System) or CUC (for a Standard System). In a Small System, these
3 bits can also be redefined as payload bits by the users.

Bit 24 to 22: 3 DB address bits. The 3-bit DB addresses are assigned and added to the 32-bit event
data in the DUC or CDUC. These 3 bits CANNOT be redefined.

Bit 21 to 18: Reserved.

Bit 17: Trigger hit map (channel 31). This bit indicates whether or not channel 31 triggered.

Bit 16: Starting flag bit. This bit is set to “0” in the Starting word 2.

Bit 15: Ending flag bit. This bit is set to “0” in the Starting words.

Bits 14 to 0: Trigger hit map (channels 16-30). This 15-bit address indicates whether or not channels
16-30 in the Detector Board triggered.

~

1 MB address DUC address DB address Channel address Starting flag bit 0
\ ; A

I S S ! .
31 30|29|28 27|26|25_21‘20|19|18|17 16

Ending flag bit 0 Not used Raw ADC data (12 bits)
A \

15‘14|13|12 11|10‘9‘8‘7‘6‘5‘4|3|2|1|0

Figure 30: Format of the 32-bit raw ADC data for an Oscilloscope data train.

The raw data format is specified in Figure 30 for ADC data, where the 32-bits in an ADC data word is defined

below:

Bit 31: Data valid bit. This bit has to be set to “1”. A parent node rejects any event data with a data
valid bit set to “0” from its offspring nodes.

Bit 30 to 28: 3 Multiplexer Board address bits. The 3-bit MB addresses are assigned and added to
the 32-bit event data in the CUC. In a system without a Multiplexer Board (a Small or Standard
system), these 3 bits can be redefined as payload bits by the users.

Bit 27 to 25: 3 DUC address bits. The 3-bit DUC addresses are assigned and added to the 32-bit
event data in the MB (for a Large System) or CUC (for a Standard System). In a Small System, these
3 bits can also be redefined as payload bits by the users.

Bit 24 to 22: 3 DB address bits. The 3-bit DB addresses are assigned and added to the 32-bit event
data in the DUC or CDUC. These 3 bits CANNOT be redefined.

Bit 21 to 17: 5 channel address bits. The 5-bit channel addresses are assigned in the Detector Board
when a single event is detected.

Bit 16: Starting flag bit. This bit is set to “0” for raw data words.

Bit 15: Ending flag bit. This bit is set to “0” for raw data words.

Bits 14 to 12: Not used.

Bits 11 to 0: 12-bit raw ADC data.

1 MB address DUC address DB address Channel address Starting flag bit 0

T b b, A \ e
31 30|29|28 27|26|2521|20‘19|18‘17 16
Ending flag bit 0 TDC data (115 bits)

[
15|14|13|12‘11|10‘9|8‘7|6‘5|4‘3|2‘l|0

Figure 31: Format of the 32-bit raw TDC data for an Oscilloscope data train.

The raw TDC data format is specified in Figure 31 for the ADC + TDC data train (i.e., Oscilloscope mode data
format address = 0000 in Starting word 1), where the 32-bits in a TDC data word is defined below:

Bit 31: Data valid bit. This bit has to be set to “1”. A parent node rejects any event data with a data
valid bit set to “0” from its offspring nodes.

Bit 30 to 28: 3 Multiplexer Board address bits. The 3-bit MB addresses are assigned and added to
the 32-bit event data in the CUC. In a system without a Multiplexer Board (a Small or Standard
system), these 3 bits can be redefined as payload bits by the users.

~

penPET ” g

BERKELEY LAB

e Bit 27 to 25: 3 DUC address bits. The 3-bit DUC addresses are assigned and added to the 32-bit
event data in the MB (for a Large System) or CUC (for a Standard System). In a Small System, these
3 bits can also be redefined as payload bits by the users.

* Bit 24 to 22: 3 DB address bits. The 3-bit DB addresses are assigned and added to the 32-bit event
data in the DUC or CDUC. These 3 bits CANNOT be redefined.

* Bit 21 to 17: 5 channel address bits. 5-bit channel addresses are assigned in the Detector Board
when a single event is detected.

* Bit 16: Starting flag bit. This bit is set to “0” for raw data words.

* Bit 15: Ending flag bit. This bit is set to “0” for raw data words.

e Bits 14 to 0: 15-bit raw TDC data.

The raw data words are written in sequential order for a single Detector Board. For the ADC plus TDC data train,
this means that the raw ADC data are written for the first sample of Channel 0, followed by the second sample
and so on until Sample N, and then followed by the raw TDC data for Channel 0. This is repeated sequentially for
all 16 Detector Board channels (see Figure 27).

1 MB address ~ DUC address DB address Reserved Starting flag bit 0
FA_\ ________ SR e, \ A e
31 30|29|28 27|26|25_21|20‘19|18‘17 16
Ending flag bit 1 Total Data length
\

[
15|14‘13|12‘11|10‘9|8‘7|6‘5|4‘3|2‘1|0

Figure 32: Format of the 32-bit Ending word for an Oscilloscope Mode data train.

The Ending word format is specified in Figure 32, where the 32-bits are defined below:

e Bit 31: Data valid bit. This bit has to be set to “1”. A parent node rejects any event data with a data
valid bit set to “0” from its offspring nodes.

* Bit 30 to 28: 3 Multiplexer Board address bits. The 3-bit MB addresses are assigned and added to
the 32-bit event data in the CUC. In a system without a Multiplexer Board (a Small or Standard
system), these 3 bits can be redefined as payload bits by the users.

e Bit 27 to 25: 3 DUC address bits. The 3-bit DUC addresses are assigned and added to the 32-bit
event data in the MB (for a Large System) or CUC (for a Standard System). In a Small System, these
3 bits can also be redefined as payload bits by the users.

* Bit 24 to 22: 3 DB address bits. The 3-bit DB addresses are assigned and added to the 32-bit event
data in the DUC or CDUC. These 3 bits CANNOT be redefined.

* Bit21 to 17: Reserved.

* Bit 16: Starting flag bit. This bit is set to “0” for Ending words.

* Bit 15: Ending flag bit. This bit is set to “1” for Ending words.

* Bits 14 to 0: 15-bit total data length. The 15-bit total data length address can be used for data
validation (e.g., to verify that data bits were not erroneously dropped).

2.5.1.2 Multiple Detector Boards
Section 2.5.1.1 describes the data format when detectors from a single Detector Board are triggered.

When a system has multiple Detector Boards, each DB will receive trigger signals and buffer event data in its
respective FIFO (when the FIFO is empty and available). Once a complete data train from a Detector Board is

~

penPET » e)

Starting bytes 1 (32 bits)

ufftered in jts FgFS i L(SE ready for the CDUC to read the entire event data and transfer it to the host PC. The
%fd&%v‘ﬂl‘/é%% d(gll ! ﬁ)eck the eight FIFOs to see if any have beddditectdammittidg(he Detector Board data

trains jn the order th re buffered. .
ADC data; &t é)ample Gly(%f Bit Data Train
ince the Detector B ?rgkg%tf trains are transferred to the host PC according to their buffering order, you cannot
ADC E‘g%w#ﬂ\f(gg@@ﬂ@tgc $ds are read out sequentially in time. In order to look for coincident events, you
need to cheekithe TDC data of nearby events.

ADC dafaekdm@|ISazmaplend! 032 bits Boards 0, 1 and 5 receive trigger signals and start filling their respective FIFOs in
the order listed. Detector Board O fills its FIFO first and its data train is transferred to the Host PC. Meanwhile,

DetecdatB6drdF AllshigsyIFO before Detector Board 1, so the CDLiS tia%s[fersgle d%[ragrain from Detector Board
5 before sgnding the data train from Detector Board 1 (Figure 33). SR tRE e?é?crt oards are not read out in
order with incrementing TDC. In order to identify coincident events, you[aﬂﬁa dhegkithe TDC data of the 7 nearest

ADC @ighoering 8venjsle 1 (32 bits)
ADC data, Ch 15 Sample 2 (32 bits) 4\
ADC data,|Ch 15 Sample N (32 bits) N
\
TDC|data Ch 15 (32 bits) \ Detector Board |
. Data Train
Ending bytes (32 bits) \
\
\
) \
\
CDWC
”
. r
7
7
/
7
/
7
7
7
7
%

Figure 33: Example transmission of Oscilloscope Mode data trains from the CDUC to the Host PC.

~

penPET *

2.6 Getting Help

The goal of OpenPET is to create an active community of general users and developers, so that we can all pool
our resources and expertise. In order to help build this OpenPET support network, we have created an opt-in
email list for people that want to keep informed of OpenPET news and updates. You can add your email to this
OpenPET email list by sending a message to sympa@lists.Ibl.gov with the subject line “subscribe openpet-
users@Ibl.gov”.

For general questions, please see the documentation available on the OpenPET website, including presentations,
publications and user guides (http://openpet.lbl.gov/documentation/general-documents). You can also check the
website’s Frequently Asked Questions at http://openpet.Ibl.gov/users/faq/.

If you have specific questions, you can read and post questions using the OpenPET forums on our website at
http://openpet.Ibl.gov/forums/. Please check past discussion threads before creating a new one.

~

penPET ® e)

BERKELEY LAB

3 Detector Board

The purpose of the Detector Board is to accept analog inputs from the detectors and convert them into Singles
Event Words. Generally speaking, this requires identifying the energy, interaction position, and arrival time
associated with a single gamma ray interaction, and as many corrections as possible should be applied before the
Singles Event Word is generated. This board must also have the ability to produce "singles events" that have
Alternate Event Formats, which are necessary for debugging, calibration, etc.

Each DB will contain an FPGA and an associated memory (SRAM). The DB FPGA will perform the necessary
computation to convert the detector signals into a Singles Event Word. Firmware is loaded into the DB FPGA by
the Support Board via the standard OpenPET Bus IO between SB and DB, as described in Section 3.1.

While the details of the signal processing depend strongly on the details of the detector module, the following is
an example describing the processing performed for a block detector module with four analog outputs. Event
processing is initiated by the OR of the low to high transitions from each of the Timing Signals. The total amount
of signal observed by each of the four PMTs (A, B, C, & D) is computed by summing the output of each ADC for
an appropriate period of time (typically 2—3 times the decay time of the scintillator). If necessary, pulse pile-up
correction is also applied. These four signals are then summed to get a raw estimate of the energy
(E=A+B+C+D), and the appropriate Anger logic estimators are computed (X=(A+B)/E, Y=(A+C)/E). Note that a
fast division algorithm can be implemented using look-up tables in the Detector Memory. The X and Y values are
used to address a crystal map table that resides in the Detector Memory, and so assign a crystal of interaction via
a look-up table. The raw energy E and the crystal of interaction are again used to address another look-up table in
the Detector Memory, and so determine whether the event satisfies the energy window criteria. Each Timing
Signal is input to a TDC that is implemented in the Detector FPGA, and so measures the (raw) position of the
arrival time of each signal within a Time Slice, and a timing estimator computed from these digitized arrival times.
The crystal of interaction and raw arrival time are used to address a look-up table stored in Detector Memory and
create a corrected arrival time. Thus, the position (crystal of interaction), energy, and arrival time have all been
computed. If the event satisfies the energy window criteria, these data are formatted to create a Singles Event
Word, and then passed to Support Board through the Bus IO block.

Note that different programs can be loaded into the DB FPGA to perform tasks other than event processing, such
as debugging, testing, and calibration tasks.

Several versions of the DB will be designed, mostly differing in how the analog inputs are being processed by the
front-end circuitries and in the number of analog input channels per DB. The details of each of the design are
described in the subsections below.

3.1 Bus IO

A diagram of the Bus IO is shown in Figure 34. The top block essentially provides control signals. A copy of the
System Clock and Time Slice Boundary signals are sent from the Support Board and are used to clock data from
the Support Board to the Detector Board. Because there is propagation delay within the Detector Board, another
copy of the System Clock and Time Slice Boundary that is produced by the Detector Board is used to clock data
from the Detector Board to the Support Board. Lines controlled by the Support Board are used to program the DB
FPGA on the Detector Board. There are lines that can simultaneously pass four Singles Event Words from the
Detector Board to the Support Board in a combination serial / parallel protocol. For each Singles Event Word, one
bit of data is passed on each of four parallel lines during each System Clock cycle, with the entire Singles Event
Word being passed during a single Time Slice. Finally, eight additional "spare" lines can be used to pass bi-
directional information between boards.

~

penPET 3 e)

[BeErkELEY LAS]

Bus 10
Detector Board Support Board

Clock In

Time Slice Boundary In
Clock Out

Time Slice Boundary Out
Control Ta

FPGA nooRre

Programming DATAO
CONF_DONE

Singles Event Word 7

Singles Event Word 7

Singles Event Word /

Singles Event Word 7

Spare Digital Lines 7

+5V

Power +3.3V
-5V
GND

Figure 34: Diagram of the BUS 10.

Figure 35 and the discussion below detail the connections between the Support Board and the Detector Board.

Singles Event Data
There will be 16 LVDS differential pairs that are used to transfer digital Singles Event Words from the Detector
Board (DB) to the Support Board (SB).

Clock

There will be 4 LVDS differential pairs that are used to transfer digital timing signals between the Detector Board
(DB) and the Support Board (SB). A Clock In and Time Slice Boundary In will be sent from the SB to the DB, and
data going from the SB to the DB will be synchronous with these clock signals. Similarly Clock Out and Time Slice
Boundary Out will be sent from the DB to the SB, and data going from the DB to the SB will be synchronous with
these clock signals.

Control

There will be 4 LVTTL single ended lines used to pass control data from the SB to the DB. They will use a variant
of the SPI (Serial Peripheral Interface) Bus protocol, which consists of a Clock line, a Data In line, a Data Out line
and a Board Enable line.

FPGA Programming
There will be 4 single ended LVTTL lines used to program the FPGA using the serial protocol. These signals will
be provided by the SB.

Spare Digital
There will be 8 LVDS differential pairs between the FPGAs on the SB and the DB. Their purpose is not defined,

as the intent is to provide users flexibility in passing information between the two boards.

~

penPET ’ —

Power and Ground

The SB will supply power to the DB. It will supply +5V, +3.3V, =5V, ground, and a detector bias voltage (-100V to
+100V). With the exception of the detector bias voltage, it is assumed that this is "digital quality" power—that the
DB will use these as inputs to on-board regulators to create analog quality power, as well as whatever other
digital voltages are necessary. It is also assumed that the +3.3V will be used to supply power for the digital
components, while the +5V and -5V will be used to supply power to the analog components.

Connector

We will use the same 96-pin connector as is used in VME modules. On the DB, this is a right angle male
connector for a 0.0625” thick board, Vector Electronics RE96MSR-062 (Digi-Key part # V1235-ND). Note that the
pin assignment is not compatible with the VME standard, and so the OpenPET electronics CANNOT be plugged
into VME crates.

A B C Color Group Description
1 DO+ GND D1+ LVDS Data between DB FPGA &
2 DO- 3.3V D1- SB FPGA
3 D2+ GND D3+ I Clock & Slice IN/OUT
4 D2- +5V D3- Undefined pins between DB FPGA
5 D4+ GND D5+ & SB FPGA
6 D4- -5V D5- Slow control SPI interface signals
7 D6+ GND D7+ DB FPGA serial programming pins
8 D6- 3.3V D7- ﬁ No connection
9 D8+ GND D9+ Power & GND
10 D8- +5V D9- Detector Bias Voltage (100 V max.)
11 D10+ GND D11+
12 D10- -5V D11-
13 D12+ GND D13+
14 D12- 3.3V D13-
15 D14+ GND D15+
16 D14- +5V D15-
17 GND -5V GND

Connector is
96 pin VME Connector

On DB
GND GND Vector Electronics RE96MSR-062

24 SPAREO+ SPARE1+ SPARE2+ (Digi-Key part # V1235-ND)
25 SPAREO- SPARE1- SPARE2-
26 SPARE3+ SPARE4+ SPARE5+ On SB
27 SPARE3- SPARE4- SPARES5- Vector Electronics RE96FSP
28 SPARE6G+ SPARE7+ CTRL _CS (Digi-Key part # \V1240-ND)
29 SPAREG- SPARE7- CTRL_CLK
30 | CTRLDO || NC€ | CITRL_DI
31 DCLK DETECTOR BIAS DATAO
32 nCONFIG 3.3V CONF_DONE

Figure 35: Connections between the Support Board and the Detector Board.

~

penPET » e

BERKELEY LAB

3.2 16-Channel Detector Board

2 MB
Inputs are only Memory
negative polarity {

NG Clock ISlice Out,|
IN1 13
I Clock /SliceIn | 2
N c
@]
Data _ Digital /O O
16-channel front-end FPGA g Q
. oy . ©
circuitries Singles Eventsy | &
Altera =
L Trigger | Cyclone s
IN15 y @
—_— 1] Communication | W
Bus (JTAG, SPI) §
3+ 4 ' i =
Clock and Slice Power N
A ©
Control Lines R . @

Figure 36: Block diagram of the 16-channel Detector Board.

A schematic of the 16-channel Detector Board is shown in Figure 36 and a photograph is shown in Figure 38.
This DB accepts up to 16 analog input signals, each of which is processed independently. The processing circuit
for one channel, as shown in Figure 37, consists of two processing chains, where the input signal is split into a
timing chain and an energy chain. The energy chain amplifies the input signal and then splits the amplified signal
into an anti-aliasing filter and a comparator. The filtered output is sent to an ADC with programmable digital gain
that digitizes the analog signal with a sampling rate of 40 — 65 MHz. The comparator provides a trigger signal to
start event processing; the trigger threshold is controlled by the energy DAC. The timing chain amplifies the input
signal with a high-gain high bandwidth amplifier followed by an ultra fast discriminator that converts the analog
signal into a digital timing signal whose leading edge is synchronized to the interaction time. The ADC values and
the Timing Signal are sent to the DB FPGA.

Inside the DB FPGA, a TDC generates a time stamp indicating the arrival time of the Timing Signal relative to the
Time Slice Boundary. The DB FPGA and its memory also analyzes the ADC data from this channel and
(potentially) combines it with information from other channels to compute the energy deposit, the interaction
position, and the event time. Appropriate calibration correction factors are also stored in the memory and applied
to the data.

penPET “ e)

BERKELEY LAB

LTC6605-7
(+5V)
PA2694
(+/-5V) Slow Comparator SE to LVDS
| MAX964
Threshold Adjust
(1-4000 mV)
“Energy DAC"
Fast Amp
Fast Comparator PECL to LVDS
THS4303
(+1-2.5V) OPA4227
Threshold Adjust
(1-2500 mV)
“Timing DAC"

x16 for each 16-channel Detector Board

12-bit
ADC
ADS5282

FPGA

SY55855VKG

Figure 37: Block diagram of the front-end circuitries of one channel of the 16-channel Detector Board.

penPET

o I

i

Figure 38: Photograph of the 16-channel Detector Board.

45

~
A
freeeee

BERKELEY LAB

3.2.1 Analog Signal Conditioning

Each input signal is required to be negative polarity. The signal is terminated, and then split into two processing
chains: timing chain and energy chain. The input stage accepts voltages between -0.8 V to 0 V and has input
diodes to protect against over and under voltage. The range of the input voltages is limited in part by the dynamic
range of the ADC. The input voltage can be attenuated to fall within the acceptable range by changing the
attenuation resistor values where the signal is split into the timing chain and energy chain. Only the signal on the
energy chain needs to be attenuated.

3.2.2Timing Signal

This circuit is a high-speed leading edge discriminator with a threshold that is controlled via a timing DAC. The
timing edge is a high to low transition.

3.2.3ADC

Each analog input signal is digitized by a 12-bit ADC with digital programmable gain that digitizes the analog
signal at a sampling rate ranging from 40 MHz to 65 MHz.

3.2.4T7DC

The TDC digitizes the arrival time of the Timing Signal with respect to the Time Slice Boundary. Thus, its
minimum and maximum counts correspond to the beginning and end of a single Time Slice respectively. The TDC
is synchronized to the System Clock, which is used to create the higher order bits of the TDC. However, the
granularity of the System Clock is too coarse for PET, and so the TDC must generate a minimum of four
additional low order bits of timing data. Thus, the least bit of the TDC will be 0.8 ns or smaller. Although it may not
be implemented initially, the long-range plan is to have a TDC with 50 ps fwhm timing resolution, which should be
more than sufficient for time-of-flight PET.

3.2.5Detector Memory

2 MBytes of SRAM memory is attached to and controlled by the DB FPGA. This control also includes loading the
contents of the memory.

3.2.6 Analog Input Connections

Figure 39 and the discussion below detail the analog input connections to the 16-channel Detector Board. Note
that these inputs can be from a user-supplied analog conditioning circuit board (e.g., a preamplifier board), and so
the connector contains pins used to provide power to and communicate with one of these (optional) circuit boards.

Analog Inputs
There are 16 analog input channels on the 16-channel DB. Each is a single-ended negative polarity input signal

with a negative-going leading edge. Input voltage levels should be between -0.8 V.and 0 V.

~

penPET * e)

BERKELEY LAB

Power and Ground

The 16-channel DB is capable of supplying power to the analog conditioning board. It supplies +5V, -5V, and
ground. It is assumed that this is "digital quality" power — that the analog conditioning board will use these as
inputs to on-board regulators to create analog quality power, as well as whatever other digital voltages are
necessary. The maximum current for each of the voltage supplies is 1 A.

Connector
We use a 68-pin D-sub connector with 0.050" Pitch x 0.100 Row to Row. The part number is AMP-Part-5787169-
7 (Digi-Key part # A33512-ND).

PIN# | DESCRIPTION DESCRIPTION PIN# Color Group Description
1 +5V -5V 2 Power & GND
3 GND IN 16 4 Analog Input to DB
5 GND IN 15 6
7 GND IN 14 8
9 GND IN 13 10
11 GND IN 12 12
13 GND IN 11 14
15 GND IN 10 16
17 GND IN 09 18 Connector on DB is
19 GND IN 08 20 68 pin D-Sub Connector
21 GND IN 07 22 AMP-Part-5787169-7
23 GND IN 06 24 0.050" Pitch x 0.100 Row to Row
25 GND IN 05 26 Digi-Key Part # A33512-ND
27 GND IN 04 28
29 GND IN 03 30
31 GND IN 02 32
33 GND IN 01 34
35 +5V -5V 36
37 GND GND 38
39 GND GND 40
41 GND GND 42
43 GND GND 44
45 GND GND 46
47 GND GND 48
49 GND GND 50
51 GND GND 52
53 GND GND 54
55 GND GND 56
57 GND GND 58
59 GND GND 60
61 GND GND 62
63 GND GND 64
65 GND GND 66
67 GND GND 68

Figure 39: Pin assignment for the Analog Input Connector to the 16-channel Detector Board.

~

penPET ¥ e)

BERKELEY LAB

4 Support Board

The main purpose of the Support Board is to accept Singles Event Words from multiple Detector Boards,
multiplex them, and pass these Singles Event Words to the Coincidence Interface Board. In addition, it provides
the control and power for the Detector Boards, and is the interface with the Host PC. It can also be configured to
act as a low-performance version of a Coincidence Board, and so identify coincident events and pass them to the
Host PC.

The Support Board, shown schematically in Figure 40, services up to 8 Detector Boards. The standard OpenPET
Bus 10 circuit, as described in Section 3.1, connects the Support Board to each Detector Board. Three FPGAs on
the Support Board (possibly with the help of Support Memory) multiplex the Singles Event Words and pass them
through the slot 8 Bus 10 block to the Coincidence Interface Board. The event multiplexing and forwarding is
shared among three FPGAs (one Master FPGA and two Slave FPGAs) due to limited pin count. Several other
blocks, such as a clock-conditioning block that ensures the fidelity of the System Clock, logic analyzer connectors,
two RS-232 ports, and diagnostic LEDs, are not shown in Figure 40.

High-level commands are sent via USB (or alternatively, through Gigabit Ethernet) from the Host PC to a Support
Microprocessor, which interprets and executes these commands. This execution may involve controlling the
Detector Board, such as by loading a program into the DB FPGA on the DB, or may involve higher level functions,
such as performing a calibration by instructing the DB to produce calibration data, analyzing the forthcoming
calibration events, computing calibration parameters, and loading these parameters into the Detector Memory on
the DB.

The SB is also capable of identifying coincident pairs of Singles Event Words, format them into Coincidence
Event Format, and pass them to the Support Microprocessor, which then passes them to the Host PC. Thus it can
act as a full-featured PET data acquisition system, albeit with a limited number of input channels and output event
rate capability.

penPET

Support Board

2 MB
Detectr il -l DDR2 Coincidence
Boards ifiiiii SRAM | | SDRAM o
Bus 10 ifiiiii i Board
Bus 10 Slave Timing

FPGA Signals In
Bus IO

Timing
Bus 10 Master FPGA Signals Out
163 L 16 /
Microprocessor

Bus IO

Slave
Bus IO FPGA USB Host
Pusto M M |temet TC

il 64 MB SD

2 MB FLASH Card

SRAM

Figure 40: Schematic of the Support Board.

48

~
/\‘ A
Feeeeer

BERKELEY LAB

‘m

4.1 Slave FPGAs

There are two Slave FPGAs on the SB. Each one of these acts primarily as a multiplexer for Singles Events, each
taking up to 16 individual Singles Events that it can receive in a single Time Frame and passing up to 4 of them to
the Master FPGA. Obviously, there is some possibility for data loss, and the multiplexing algorithm is designed to
ensure that this loss is unbiased. Each Slave FPGA also serves as a fan-in / fan-out for communication between
the Support Microprocessor and the individual Detector Boards, and the two Slave FPGAs can communicate with
each other.

The digital signals between each Slave FPGA and the Master FPGA are identical to the Bus IO signals between
the Slave FPGA and a single Detector Board: lines for the Clock and Time Slice Boundary (both directions),
FPGA programming lines, 16 event data lines, and eight user-definable data lines. There are also 32 user-
definable digital lines between the two Slave FPGAs, 16 sending data in each direction.

4.2 Master FPGA & Support Microprocessor

A single physical FPGA performs the logical functions of both the Master FPGA and the Support Microprocessor.
Its FPGA-like functions are mostly limited to passing events from the Slave FPGAs to the Coincidence Interface
Board (providing multiplexing, if necessary).

Some of the logic blocks in the Master FPGA shown in Figure 40 can be programmed (using Nios Il) to act as the
Support Microprocessor. Nios Il is used to program some of the logic blocks in this FPGA to be identical to
microprocessor hardware, which then runs executable files programmed in C. This microprocessor is connected
via USB (or Gigabit Ethernet) to the Host PC, from which it receives high-level commands, and then interprets
and executes these commands. It is responsible for loading all the programs into the Slave FPGAs and DB
FPGA, as well as the contents of all the Support Memory and Detector Memory, and all of the other registers that
are on the DB and SB. It monitors the event stream and can insert diagnostic information (such as event rates)
into the event stream or provide this information directly to the Host PC. Whenever possible, calibration routines
are also performed on the Support Microprocessor.

4.3 Support Memory

There are multiple forms of memory on the Support Board. The SRAM is used by the “FPGA-like” functions. This
memory provides its output within 1 clock cycle of being addressed, and so is both reasonably fast and
deterministic, which greatly simplifies incorporating it within FPGA algorithms. However, SRAM capacity is fairly
small. Thus, the Master FPGA is connected to 4 MB of SRAM and each of the Slaves FPGAs is connected to 2
MB of SRAM, for a total of 8 MB of SRAM on each Support Board. This memory is typically used to store look-up
tables that apply real time calibration and corrections to the event data.

As the Master FPGA also emulates a microprocessor, “disk storage” and “RAM memory” are also necessary for it
to function effectively. The “RAM memory” is provided via up to 1 GB of RAM that can be plugged into a DDR2
SDRAM connector (identical to that typically found in laptop computers). The “disk storage” is provided by a SD
Card (identical to that found in digital cameras) that is plugged into a SD Card slot. Our vision is that it will contain
all the FPGA firmware needed for Detector FPGAs, the contents of all the Support SRAM Memory and Detector
Memory, and all of the other registers that are on the Detector Board and Support Board. For systems where the
convenience of using “disk storage” that can be easily removed is not desired, the same function can be provided
by a 64 MB FLASH memory chip that is also connected to the Master FPGA. This information can also be stored
in the on-board EPCS memory, which is where it resides in the initial release.

~

penPET . i

BERKELEY LAB

4.4 Clock Conditioning

The Clock Conditioning block consists of a PLL (phase-locked loop) that regenerates the System Clock signal
from the Support Board in a Coincidence Unit and passes it to the Support Board FPGAs in a Detector Unit and
then to the Detector Boards. The block also includes space for a clock IC, which is used to provide the System
Clock when the system is being used without a Coincidence Unit (i.e., when the Support Microprocessor passes
events directly to the Host PC).

4.5 Connectors, Slots 0-7

The connector that is soldered onto the SB in order to connect to a single DB is a 96 pin female connector, press
fit for a 0.125” thick board, Vector Electronics V1240-ND (Digi-Key part # RE96FSP).

4.6 Slots 8-11

The rightmost four slots (slot numbers 8 through 11) will each contain a board with a specific purpose, but in
general are used to facilitate connection to and communication between various parts of the system.

4.6.1Coincidence Interface Board (Slot 8)

The purpose of the board in slot 8 is to communicate with the Coincidence Unit. The formats of the signals that
are passed between the Detector Unit and the Coincidence Unit via the Coincidence Interface Board are identical
to those being passed between the Detector Board and the Support Board on slots 0-7.

There will be two versions of the Coincidence Interface Board, one called Coincidence Interface Board CI-1 to
interface with the Multiplexer Board MB-1 in the Standard System and another called Coincidence Interface Board
CI-8 to interface with the Multiplexer Board MB-8 in the Large System. Cl-1 is a passive board with no active
components—just traces connecting the front panel and rear connectors. This front panel connector will then
connect to a cable that brings these signals to MB-1 in the Coincidence Unit. On the other hand, CI-8 will have
active components (e.g., FPGA, etc.) to interface with MB-8. These boards are only necessary if the system
contains a Coincidence Unit.

4.6.2Host PC Interface (Slot 9)

The purpose of this board is to provide the interface to the Host PC. The front panel contains an Ethernet
connector, a USB connector, an SD Card connector, three reset switches, 20 LEDs, and a Detector Bias Voltage
input (BNC, maximum 100 V, positive or negative polarity). The board itself holds a Gigabit Ethernet transceiver
chip, as well as a connector that a QuickUSB card must be plugged into in order for the USB communication to
function. In the initial release, only communication through the QuickUSB connector is supported.

4.6.3User 10 (Slot 10)

The purpose of this board is to provide User 10. It has an external clock input, two DB9 RS-232 connectors that
are connected to the Main FPGA (which can be used to communicate to motor controllers, etc.) and 48 digital 10
lines. An on-board jumper selects whether these 48 lines use 5 V or 3.3 V logic level. Each of the three FPGAs
(the Main and the two Slaves) is connected to 16 10 lines. On board jumpers select the direction (input or output)
of each IO line in groups of 4 (e.g., the direction Master FPGA 10 lines 0-3 are set by a single jumper, and so
must be the same).

~

penPET » e)

BERKELEY LAB

4.6.4Debugging (Slot 11)

The purpose for this board is Debugging. It contains a JTAG connector (that can be used to program the FPGAs
directly), four Aligent 16902B connectors for logic analyzers (two connect to the Main FPGA, and one to each of
the two Slave FPGAs), and 30 user-defined LEDs (10 connected to each of the 3 FPGAs).

~

penPET i e)

BERKELEY LAB

5 Commands

In general, every OpenPET system command also has an associated response. Both commands and responses
(C/R) have the format shown in Figure 41. There are four segments of information required: command/response
id (16 bits), source address (16 bits), target address (16 bits), and command/response data payload (32 bits).

The command/response id specifies the command type, using a 16-bit number with the most significant bit (C/R
flag) as 0 for a command and 1 for a response. For example, command id 0x2200 boots up the Detector Boards,
and the corresponding response id is 0xa200. Within the command/response id, the 4-bit C/R node type specifies
whom the command is for within the OpenPET tree topology (Section 1.4). For a small system, the C/R node type
will always be 0100 to specify the CDUC node. (Note: the C/R node type in the C/R ID should be the same as the
node type in the source/target address.) The standard/user C/R flag (bit 10) in the command/response id is
reserved for future use, so commands can be grouped by functionality. The 10-bit C/R function type specifies the
command task (where bit 9 is O for universal tasks and 1 for hardware-specific tasks). So all 16-bits together
specify the command id or response id (see Tables 3 and 4).

The source address is a 16-bit number that defines where the command/response originates. Commands
originate in the host PC, which has source address 0xF00O.

The target address is a 16-bit number that identifies where the command/response should be received and
processed. Typically commands for a small system have a target address of 0x4000 for the CDUC. However,
some underlying commands target a Detector Board, which has a target address of 0x3000. (Note: the DB
address of 0-7 corresponds to DB hardware slots 0-7; for example, the DB address for slot 3 is 30c0.)

The C/R data payload is a 32-bit number that specifies additional information for each command; see below for
examples.

Format of the OpenPET System Commands and Responses:

C/RID Source Address Target Address C/R Data Payload
(16 bits) (16 bits) (16 bits) (32 bits)

Format of the Command and Response ID (C/R ID):

C/R node type (4 bits) C/R function l,\ipc (10 bits)

IISIHIIRIDIIIII(JI‘)IXI?I()ISI4I3IZIII(]I
T i

C/R flag Std/User C/R tlag

Format of the Source and Target Address:

Node type (4 bits) Absolute nddri'sxl 12 bits)
[
|15|l4|13|12|ll|l()|9|8I7|t1|5|4|3|1|IIO
Y - ;.4.4....,‘““.4.441 Y i 1 ;
Reserved DB address DUC address MB address

Figure 41: OpenPET command/response address formats. Bits shown in white are not used.

The executable opet_cmd_usb.exe is used to control the system. In particular, it is used to send a command to
target hardware that provides a response. The command executable has several arguments:

opet_cmd_usb command ID, target address, command payload, timeout, USB module number

0enPET & =)

BERKELEY LAB

Tables 3 and 4 show a list of the current OpenPET commands, including their command id and a brief description
of their function. As discussed above, the target address for user commands for a small system is 0x4000 to
specify a CDUC with absolute address of 0. The command payload is specified for each command in the
examples that follow. The timeout is measured in milliseconds within an allowed integer range of -30,000 to
30,000 and a default value of 200. A negative timeout indicates not to send the command, but to wait to read
responses from the USB FIFO; the magnitude of the timeout value is not used for a negative timeout. A timeout of
0 indicates to send a command without reading a response. And a positive timeout indicates to send a command
and wait to read a response until the specified timeout. Finally, the USB module number is an integer between 0-7
with the default value of 0. USB module numbering applies only to QuickUSB modules plugged into the host PC
(not other peripheral USB devices), and the QuickUSB module numbers are based on the order in which they
were plugged in.

In summary, the opet_cmd executable arguments are:

¢ Command ID: 16 bits
» (See Table 2)
* Target address: 16 bits
» Coincidence Detector Unit Controller: 0x4000
¢ Command payload: 32 bits
» (See examples below)
¢ Timeout: units of milliseconds, default 200, integer range -30,000 to 30,000
* USB module number: default 0, integer range 0-7
e The timeout and USB module number are optional arguments, so they can be omitted. However, if USB
module is provided, the timeout must also be provided.
* All bits specified as “not used” or “reserved” should be set to 0.

Command ID Command Name Command Function

(Response ID)
0x2200 Boot-up Detector Boards Loads the FPGA configuration to all Detector Boards.
(0xa200)
0x2201 Set system data mode Configures the system data mode. At present, only
(0xa201) Oscilloscope data mode is implemented.
0x2202 Read system data mode Reads the system data mode.
(0xa202)
0x2203 Set Oscilloscope data settings Configures the Oscilloscope mode data settings. Can
(0xa203) specify data format and number of ADC samples per

channel.

0x2204 Read Oscilloscope data settings Reads the Oscilloscope mode data settings.
(0xa204)
0x2205 Set trigger mask (channels 0-15) Configures the trigger mask. Can enable/disable
(0xa205) trigger for channels 0-15 for a single DB or all DBs.
0x2206 Set trigger mask (channels 16-31) Configures the trigger mask. Can enable/disable
(0xa206) trigger for channels 16-31 for a single DB or all DBs.
0x2207 Read trigger mask (channels 0-15) | Reads the trigger mask for channels 0-15 for a single
(0xa207) DB.
0x2208 Read trigger mask (channels 16-31) | Reads the trigger mask for channels 16-31 for a single
(0xa208) DB.
0x2209 Clear event FIFO Clears the event FIFO to remove data from previous
(0xa209) events.

Table 3: Summary of the OpenPET commands for universal tasks.

~

penPET ” e)

BERKELEY LAB

Command ID = 0x2200
Payload:

Note:

Example:

Command ID = 0x2201
Payload:

Example 1:

Command ID = 0x2202
Payload:

Example 1:

Note:

penPET

Load FPGA firmware into all Detector Boards

Bits 31-1: Not used
Bit 0: Selects which FPGA settings to load to DBs (0 =default, 1 = previous
settings)

This command will load the default/previous FPGA settings into all the Detector
Boards

opet_cmd_usb 0x2200, 0x4000, 0x00000000, 3000, 0

Bits 31-1: Unused bits should be set to 0

Bit 0: 0 indicates to load default settings

Loads the FPGA firmware into all Detector Boards of the CDUC using default
values, with a 3000 ms timeout for a response.

Correct response: 0xa200, 0x4000, 0x0
(Response payload = command payload)

Configures system data mode

Bits 31-8: Not used
Bits 7-0: System data mode (0x00 for Oscilloscope mode, currently the only
system data mode that has been implemented and the default)

opet_cmd_usb 0x2201, 0x4000, 0x00000000, 200, 0

Bits 31-8: Unused bits should be set to 0

Bits 7-0: 0x00 selects Oscilloscope mode

Configures the system data mode to Oscilloscope mode for the CDUC and all
connected Detector Boards, with a 200 ms timeout for a response.

Correct response: 0xa201, 0x4000, 0x00000000
(Response payload = command payload)

Reads system data mode (e.g., 0x00000000 for Oscilloscope)
Bits 31-0: Not used

Setup: opet_cmd_usb 0x2201, 0x4000, 0x00000000, 200, 0

Read: opet_cmd_usb 0x2202, 0x4000, 0x00000000, 200, 0

Bits 31-0: Unused bits should be set to 0

Reads the system data mode of the CDUC and all connected Detector Boards,
with a 200 ms timeout for a response.

Before this command is run, command 0x2201 must be run to configure the
system data mode

Correct response: 0xa202, 0x4000, 0x00000000

(Response payload bits 7-0 = CDUC data mode value)
Error: response payload bit 8 = 1 indicates that the system data mode values
from the DBs do not match the CDUC value

~

54 [E/‘}\ ‘m

[BeErkELEY LAS]

Command ID = 0x2203
Payload:

Note:

Example 1:

Example 2:

Command ID = 0x2204
Payload:

Note:

penPET

¢ n n n

>

Configures Oscilloscope mode data settings

Bits 31-28: Reserved.
Bits 27-24: Oscilloscope mode data format address:
o 0000: ADC plus TDC data format (default)
0001: ADC data format
0010: Test communication data format*
0011: Test analog data format**
0100-0111: Reserved
1000-1110: User defined data format
o 1111: Reserved (for invalid Oscilloscope mode data format flag)
Bits 23-8: Reserved.
Bits 7-0: Number of raw ADC samples per channel (spaced 25 ns apart,
maximum number of 254).

o O O O O

* Test communication data format = ADC+TDC data format with ADC values
= counter values that increment from 0 to N-1, where N is the value set in bits 7-
0. For example, ADC data Sample 1 (for all channels) = “0”, ..., ADC data
Sample N (for all channels) = “N-1".

** Test analog data format = ADC+TDC data format with ADC values from
analog input signal that is triggered with an internal clock.

opet_cmd_usb 0x2203, 0x4000, 0x00000020, 200, 0

Bits 27-24: 0x0 selects ADC plus TDC data format

Bits 23-8: Reserved bits should be set to 0

Bits 7-0: 0x20 selects 32 raw ADC samples per channel

Configures the CDUC and all connected Detector Boards with the Oscilloscope
settings of ADC plus TDC data format and 32 raw ADC samples per channel,
with a 200 ms timeout for a response.

Correct response: 0xa203, 0x4000, 0x00000020
(Response payload = command payload)

Error: response payload bits 27-24 = 0xF indicates an invalid Oscilloscope mode
data format

opet_cmd_usb 0x2203, 0x4000, 0x02000020, 200, 0

Bits 27-24: 0x2 selects test communication data format

Bits 23-8: Reserved bits should be set to 0

Bits 7-0: 0x20 selects 32 raw ADC samples per channel

Configures the CDUC and all connected Detector Boards with the Oscilloscope
settings of test communication data format and 32 raw ADC samples per

channel, with a 200 ms

timeout for a response.
Correct response: 0xa203, 0x4000, 0x02000020
(Response payload = command payload)

Error: response payload bits 27-24 = 0xF indicates an invalid Oscilloscope mode
data format

Reads Oscilloscope mode data settings

Bits 31-0: Not used

~

55 — ‘ﬁ

[BeErkELEY LAS]

Example 1:

Command ID = 0x2205
Payload:

Note:

Example 1:

¢ n n n

Command ID = 0x2206
Payload:

Note:

Example 1:

¢ n n n

penPET

Before this command is run, command 0x2203 must be run to configure the
Oscilloscope mode data settings

Setup: opet_cmd_usb 0x2203, 0x4000, 0x00000020, 200, 0

Read: opet_cmd_usb 0x2204, 0x4000, 0x00000000, 200, 0

Bits 31-0: Unused bits should be set to 0

Reads the Oscilloscope mode data settings of the CDUC and all connected
Detector Boards, with a 200 ms timeout for a response.

Correct response: 0xa204, 0x4000, 0x00000020
(Response payload bits 27-24 = CDUC Oscilloscope mode data format
value, bits 7-0 = CDUC raw ADC sample number per channel)

Error: response payload bit 15 = 1 indicates that the raw ADC samples per
channel from the DBs do not match the CDUC value

Error: response payload bit 31 = 1 indicates that the data format values from the
DBs do not match the CDUC value

Configures trigger mask for channels 0-15

Bits 31-28: DB address (0-7 corresponding to slots 0-7; 8 for all DBs)
Bits 27-16: Not used
Bits 15-0: Enables/disables the trigger for channels 0-15

The energy DAC determines whether or not a channel triggers (see Section 3.2).

opet_cmd_usb 0x2205, 0x4000, 0x3000FFFF, 200, 0

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-16: Unused bits should be set to 0

Bits 15-0: OxFFFF enables the trigger for channels 0-15

Enables the trigger for channels 0-15 for the Detector Board in slot 3, with a 200
ms timeout for a response.

Correct response: 0xa205, 0x4000, 0x3000FFFF
(Response payload = command payload)
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Configures trigger mask for channels 16-31

Bits 31-28: DB address (0-7 corresponding to slots 0-7; 8 for all DBs)
Bits 27-16: Not used
Bits 15-0: Enables/disables the trigger for channels 16-31

The energy DAC determines whether or not a channel triggers (see Section 3.2).

opet_cmd_usb 0x2206, 0x4000, 0x30000000, 200, 0

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-16: Unused bits should be set to 0

Bits 15-0: 0x0000 disables the trigger for channels 16-31

Disables the trigger for channels 16-31 for the Detector Board in slot 3, with a
100 ms timeout for a response.

Correct response: 0xa206, 0x4000, 0x30000000
(Response payload = command payload)
Error: response payload bits 31-28 = OxF indicates an invalid DB address

~

56 [E/f}\ ‘m

[BeErkELEY LAS]

Command ID = 0x2207
Payload:

Note:

Example 1:

Command ID = 0x2208
Payload:

Note:

Example 1:

Command ID = 0x2209
Payload:

penPET

Reads trigger mask for channels 0-15 for a single Detector Board

Bits 31-28: DB address (0-7 corresponding to slots 0-7)
Bits 27-0: Not used

Before this command is run, command 0x2205 must be run to configure the
trigger mask for channels 0-15.

Setup: opet_cmd_usb 0x2205, 0x4000, 0x3000FFFF, 200, 0

Read: opet_cmd_usb 0x2207, 0x4000, 0x30000000, 200, 0

Bits 31-28: 0x3 indicates that the read command is for the Detector Board in slot
3.

Bits 27-0: Unused bits should be set to 0

Reads the trigger mask for channels 0-15 the Detector Board in slot 3, with a

200 ms timeout for a response.

Correct response: 0xa207, 0x4000, 0x3000FFFF
(Response payload bits 31-28 = DB address, bits 15-0 = trigger mask for
channels 0-15)

Error: response payload bits 31-0 = OxFFFFFFFF indicates that the trigger mask
register in the DB doesn’t match that in the CDUC

Error: response payload bits 31-0 = 0xFO000000 indicates an invalid DB address

Reads trigger mask for channels 16-31 for a single Detector Board

Bits 31-28: DB address (0-7 corresponding to slots 0-7)
Bits 27-0: Not used

Before this command is run, command 0x2206 must be run to configure the
trigger mask for channels 16-31.

Setup: opet_cmd_usb 0x2206, 0x4000, 0xO000FFFF, 200, 0

Read: opet_cmd_usb 0x2208, 0x4000, 0x00000000, 200, 0

Bits 31-28: 0x0 indicates that the read command is for the Detector Board in slot
0.

Bits 27-0: Unused bits should be set to 0

Reads the trigger mask for channels 16-31 of the specified Detector Board, with
a 200 ms timeout for a response.

Correct Response: 0xa208, 0x4000, 0xO000FFFF
(Response payload bits 31-28 = DB address, bits 15-0 = trigger mask for
channels 16-31)

Error: response payload bits 31-0 = OxFFFFFFFF indicates that the trigger mask
register in the DB doesn’t match that in the CDUC

Error: response payload bits 31-0 = 0xFO000000 indicates an invalid DB address

Clears event FIFO

Bits 31-24: Not used

Bits 23-16: Reset hold time in ms for DB FPGA (Recommend 240 ms)

Bits 15-8: Reset hold time in ms for CDUC 10 FPGA (Recommend 240 ms)
Bits 7-0: Reset hold time in ms for CDUC Main FPGA (Recommend 240 ms)

~

57 f—— ‘ﬁ

BERKELEY LAB

Example 1:

opet_cmd_usb 0x2209, 0x4000, Ox0O0FOFOFO, 200, 0
Bits 31-24: Unused bits should be set to 0
Bits 23-0: OxFOFOFO0 sets proper reset hold time of 240 ms for all FPGAs

- Clears the event FIFO in the CDUC and all connected DBs (to remove data from
previous events), with a 200 ms timeout for a response.
Correct Response: 0xa209, 0x4000, 0xOOFOFOFO
(Response payload = command payload)
Example 2: opet_cmd_usb 0x2209, 0x4000, 0x00000000, 200, 0
= Bits 31-24: Unused bits should be set to 0
= Bits 23-0: 0x000000 sets reset hold time to 0 ms for all FPGA
- Does NOT clear the event FIFO in the CDUC and DBs, since reset hold time for
all FPGA set to 0 ms. This is not recommended.
Correct Response: 0xa209, 0x4000, 0x00000000
(Response payload = command payload)
Command ID Command Name Command Function
(Response ID)
0x2400 Send sawtooth test pulse Sends a sawtooth test pulse signal to all DACs on a
(0xa400) single Detector Board. Can specify which DB and the
number of sawtooth waves.
0x2401 Initialize DAC Initializes DACs registers with default values. Can
(0xa401) specify a single DB or all DBs.
0x2402 Set DAC voltage Sends a single voltage signal to DACs on a single
(0xa402) Detector Board. Can specify which DB, DAC type,
DAC channels and voltage value.
0x2403 Initialize ADC Initializes ADCs registers with default values. Can
(0xa403) specify a single DB or all DBs.
0x2404 Set ADC gain Set ADC gain in a single Detector Board. Can specify
(0xa404) gain, which DB, and a single channel or all channels.

Table 4: Summary of the OpenPET commands for DB/hardware specific tasks.

Command ID = 0x2400
Payload:

Example:

penPET

Send sawtooth test pulse to all DACs on a single Detector Board

Bits 31-28: DB address (0-7, corresponding to slots 0-7)

Bits 27-25: Reserved (for hardware version control)

Bits 24-16: Not used

Bits 15-0: Number of sawtooth waves. Each wave has a period of 1.8 s and a
peak-to-peak amplitude of 4.08 V (Energy DACs) or 2.51 V (Timing or Reserved
DACs).

opet_cmd_usb 0x2400, 0x4000, 0x30000004, 200, 0

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-16: Reserved and unused bits should be setto 0

Bits 15-0: 0x0004 indicates to send a 4 sawtooth signal

Sends a single 4 sawtooth signal to all DACs on the Detector Board in slot 3 of
the CDUC, with a 200 ms timeout for a response.

~

58 [E/‘}\ ‘m

BERKELEY LAB

Command ID = 0x2401
Payload:

Example:

Command ID = 0x2402
Payload:

Note:

Example 1:

penPET

Correct response: 0xa400, 0x4000, 0x30000004
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Initialize all DAC registers with default values on a single DB or all DBs

Bits 31-28: DB address (0-7 corresponding to slots 0-7; 8 for all DBs)
Bits 27-25: Reserved (for hardware version control)
Bits 24-0: Not used

opet_cmd_usb 0x2401, 0x4000, 0x30000000, 200, 0

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-0: Reserved and unused bits should be setto 0

Initializes all DAC registers with default values (see Appendix 1) for the Detector
Board in slot 3 of the CDUC, with a 200 ms timeout for a response.

Correct response: 0xa401, 0x4000, 0x30000000
(Response payload = command payload)
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Set DAC voltages on a single Detector Board

Bits 31-28: DB address (0-7, corresponding to slots 0-7)

Bits 27-25 Reserved (for hardware version control)

Bits 24-23: Not used

Bits 22-21: DAC type (0=energy DAC, 1=timing DAC, 2= reserved DAC, 3=all
DAGCs, all channels)

Bit 20: All DAC channels within single DAC type (0=no, 1=yes)
Bits 19-16: Individual DAC channel number (0-15))

Bits 15-12: Voltage value (0-4, volts)

Bits 11-8: Voltage value (0-9, 0.1 volts)

Bits 7-4: Voltage value (0-9, 0.01 volts)

Bits 3-0: Voltage value (0-9, 0.001 volts)

Before this command is run, command 0x2401 must be run to initialize the
DACs.

This command will be ignored if the selected input voltage is invalid. The allowed
range is 0 - 4.08 V for energy DACs and 0 - 2.51 V for timing or reserved DACs.
The trigger DAC is usually set to a low threshold to obtain the best timing.

The energy DAC determines whether readout is initiated, and so is usually set to
a higher threshold to reduce noise triggers (see Section 3.2).

opet_cmd_usb 0x2402, 0x4000, 0x30602150, 200, 0

0x30602150 (=0011 000 00 11 O 0000 0010 0001 0101 0000)

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.

Bits 27-23: Reserved and unused bits should be setto 0

Bits 22-21: 0x3 indicates that the voltage will be set for all DACs, all channels

Bits 20: Bit ignored for this case (set to 0)

Bits 19-16: Bits ignored for this case (set to 0)

Bits 15-0: Sets the DAC voltage value to 2.150 V

Sets all DACs and all channels on the Detector Board in slot 3 of the CDUC to
+2.150 V, with a 200 ms timeout for a response.

~

59 [E/f}\ ‘m

[BeErkELEY LAS]

Example 2:

Command ID = 0x2403
Payload:

Example:

Command ID = 0x2404
Payload:

Note:

Example 1:

penPET

Correct response: 0xa402, 0x4000, 0x30602150

(Response payload = command payload)
Error: response payload bits 15-0 = OxFFFF indicates an invalid voltage setting
Error: response payload bits 31-28 = OxF indicates an invalid DB address

opet_cmd_usb 0x2402, 0x4000, 0x30032150, 200, O

0x30032150 (=0011 000 00 00 O 0011 0010 0001 0101 0000)

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-23: Reserved and unused bits should be set to 0

Bits 22-21: 0x0 indicates that the DAC type is energy

Bits 20: 0 indicates that an individual channel has been selected

Bits 19-16: 0x3 indicates that the voltage will be set on DAC channel 4

Bits 15-0: Sets the DAC voltage value to 2.150 V

Sets DAC energy channel 4 on the Detector Board in slot 3 of the CDUC to
+2.150 V, with a 200 ms timeout for a response.

Correct response: 0xa402, 0x4000, 0x30032150

(Response payload = command payload)
Error: response payload bits 15-0 = OxFFFF indicates an invalid voltage setting
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Initialize all ADC registers with default values on a single DB or all DBs

Bit 31-28: DB address (0-7 corresponding to slots 0-7; 8 for all DBs)
Bits 27-25: Reserved (for hardware version control)
Bits 24-0: Not used

opet_cmd_usb 0x2403, 0x4000, 0x30000000, 1000, O

Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
Bits 27-0: Reserved and unused bits should be setto 0

Initializes all ADC registers with default values (see Appendix 1) for the Detector
Board in slot 3 of the CDUC, with a 1000 ms timeout for a response.

Correct response: 0xa403, 0x4000, 0x30000000
(Response payload = command payload)
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Set ADC gain(s) on a single 16-channel Detector Board

Bits 31-28: DB address (0-7, corresponding to slots 0-7)

Bits 27-25: Reserved (for hardware version control)

Bits 24-9: Not used

Bits 8-4: Channel ID (0-15 configures channel 0-15, 16 configures all 16
channels)

Bits 3-0: Gain (0-12 corresponds to 0-12 dB, with 12 being the highest gain)

Before this command is run, command 0x2403 must be run to initialize the
ADCs.

opet_cmd_usb 0x2404, 0x4000, 0x30000106, 1000, O
Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.

~

60 — ‘Q

BERKELEY LAB

Bits 27-9: Reserved and unused bits should be set to 0

Bits 8-4: 0x10 indicates that the ADCs for all 16 channels will be configured
Bits 3-0: Ox6 sets the ADC gain to 6 dB

Sets the ADC gain to 6 dB for all ADCs on the Detector Board in slot 3 of the
CDUC, with a 1000 ms timeout for a response.

¢ n n L]

Correct response: 0xa404, 0x4000, 0x30000106

(Response payload = command payload)
Error: response payload bits 3-0 = OxF indicates an invalid ADC gain
Error: response payload bits 8-4 = 0x1F indicates an invalid ADC channel
Error: response payload bits 31-28 = OxF indicates an invalid DB address

Example 2: opet_cmd_usb 0x2404, 0x4000, 0x30000006, 1000, O
e Bits 31-28: 0x3 indicates that the command is for the Detector Board in slot 3.
* Bits 27-9: Reserved and unused bits should be setto 0
= Bits 8-4: 0x00 indicates that the ADC for channel 0 will be configured
= Bits 3-0: Ox6 sets the ADC gain to 6 dB
- Sets the ADC gain to 6 dB for ADC channel 0 on the Detector Board in slot 3 of
the CDUC, with a 1000 ms timeout for a response.

Correct response: 0xa404, 0x4000, 0x30000006

(Response payload = command payload)
Error: response payload bits 31-28 = OxF indicates an invalid DB address
Error: response payload bits 3-0 = OxF indicates an invalid ADC gain

~

penPET i e)

BERKELEY LAB

6 OpenPET Control and Analysis Tools (OpenPET CAT)

OpenPET Control and Analysis Tools (OpenPET CAT) are data acquisition and analysis software for the
OpenPET electronics based on the ROOT framework. OpenPET CAT utilizes the object-oriented design in
providing basic utilities, control and analysis tools for the OpenPET electronics. Using OpenPET CAT requires
installing the ROOT package (http://root.cern.ch). Using OpenPET CAT is optional; users can run the executables
“opet_cmd_usb” to configure the system and “opet_acq_usb” to acquire data directly.

6.1 Installing ROOT

Go to http://root.cern.ch/drupal/content/downloading-root for instructions on downloading and installing ROOT.
Although ROOT is supported on many platforms, OpenPET only supports the Windows version of ROOT using
the Microsoft Visual C++ compiler. Current OpenPET CAT supports ROOT version 5.32/04 and Microsoft Visual
C++ 2010. If you plan to develop and compile OpenPET CAT codes, you also need to install Microsoft Visual C++
2010 Express, which can be downloaded at no cost from http://www.visualstudio.com/downloads/download-
visual-studio-vs, and cygwin.

6.2 Using OpenPET CAT
6.2.1 Configuration Files

Defining an OpenPET system starts with a system configuration file as shown in Figure 42.

The system configuration file defines:
* Node Type: “4” for CDUC.
* Command Engine Type: “0” for USB and “1” for Ethernet.
* Command Engine Id: “0”
e Acquisition Engine Type: “0” for USB and “1” for Ethernet.
* Acquisition Engine Id: “0”
* Configuration Files Directory: The directory path to the remaining configuration files.
* MB Setup Files Prefix: The file prefix to the Multiplexer Board configuration files.
e MB Configuration: The multiplexer board address (0 to 7).

Note: Any comments can be inserted between the “***end ...” and the next “***...” tags.

~

penPET > e)

BERKELEY LAB

This file gives the hardware configuration parameters for
the specified scanner.

*#*Node Typet**

4=cduc

4

end Node Type

Command Engine Type

@=usb, l=ethernet

0

end Command Engine Type

Command Engine Id
0
end Command Engine Id

Acquisition Engine Type

@=usb, l=ethernet

0

end Acquisition Engine Type

Acquisition Engine Id
0
end Acquisition Engine Id

Configuration Files Directory
C:\Documents and Settings\seng\My Documents\OpenPET\software\small_system
end Configuration Files Directory

MB Setup Files Prefix
MB
end MB Setup Files Prefix

MB Configuration

MB Address

0

end MB Configuration

Figure 42: Example system configuration for a small system.

Following the system configuration files, there are three more configuration files: 1) Multiplexer Board
configuration file; 2) Detector Unit configuration file; and 3) Detector Board configuration file. For example, in
Figure 42, there is one multiplexer board with address 0 (note that in the small system, there are no physical MB
board, so a dummy MB configuration file with address 0 is used). The location and prefix of this file in specified in
“**Configuration Files Directory***” and “***MB Setup Files Prefix***” respectively. In this example, a file MBO.txt,
as shown in Figure 43, would reside in the directory C:\Documents and Settings\seng\My
Documents\OpenPET\software\small_system. MBO0.txt shows that there is a Detector Unit with address 0, it is
connected to MBO, and the configuration file for this Detector Unit is MBO_DUOQ.ixt as shown in Figure 44.
MBO_DUO.ixt shows that the Detector Board type is the 16-Channel DB for each of the two DBs with addresses 0
and 2 in this Detector Unit. The configuration files for these Detector Boards are MBO_DUO_DBO.txt and
MBO_DUO_DB2.txt. For example, MBO_DUO_DBQO.txt is shown in Figure 45, which include all the DAC threshold
and ADC gain settings for the 16-Channel DB.

penPET . e f

BERKELEY LAB

This file gives the hardware configuration parameters for
the Multiplexer Board.

DU Setup Files Prefix
MB@_DU
DU Setup Files Prefix

DU Configuration

DU Address

0

end DU Configuration

Figure 43: Example Multiplexer Board configuration file.

This file gives the hardware configuration parameters for
the Detector Unit.

DB Setup Files Prefix
MB@_DU@_DB
end DB Setup Files Prefix

***DB Configuration®**

Type Address (Type: 8=16-Ch DB)
e e

e 2

end DB Configuration

Figure 44: Example Detector Unit configuration file.

penPET) |

BERKELEY LAB

penPET

0.0

This file gives the hardware configuration parameters for
the Detector Board.

Channel Enable
Channel Enable

HWNOUV S WNES

e N N

15 1
end Channel Enable

Timing Threshold
Channel DACCV)

Woo~NOUV S WNE®

000000000
N N N N i

15 1
end Timing Threshold

Energy Threshold
Channel DAC(V)

HWoo~NOWUM A WNES

0
11
12
13
14
15
end Energy Threshold

S99 9999999999 S
SEIIISIISIIISKRR

Reserved Voltage

DACCV)

0.0

0.0

end Reserved Voltage

ADC Baseline Voltage
DAC(V)

Figure 45: Example Detector Board configuration file.

65

~

BERKELEY LAB

@

6.2.20penPET CAT Library and Macros

A library of C++ classes and ROOT macros are implemented to configure the system, acquire data and analyze
the data. The OpenPET CAT software package can be downloaded from the OpenPET website
(http://openpet.lbl.gov) under the “Downloads” menu. In the ‘lib’ directory, there is a library file called

libopenpetcat.dll, which has to be copied to the directory <installed ROOT directory>/bin (i.e., SROOTSYS/bin). In
the ‘examples’ directory, there are macros and configuration files to help you get started. Three key macros are
described below:

1.

penPET » e)

acquireData.C(int acqTimelnSec, int initSystem=1)
This macro configures the system using configuration files and acquires a raw data file.
Inputs (arguments to the function):
* acqTimelnSec — acquisition time in seconds
* initSystem — configures the system (by default set to 1)
Inputs (edit in the macro file):
* dataMode — see command ID 0x2201
e dataFormat — see command ID 0x2203 for configuring oscilloscope mode
e numADCsample — 1 to 241; see command ID 0x2203
* configFile — system configuration file
* filename — raw data filename (the date will be prepended to this name)

Example 1: root> .x acquireData.C(100)
This macro initializes the system using the configuration files and acquires data for 100 s.

Example 2: root> .x acquireData.C(100, 0)
This macro acquires data for 100 s without initializing the system.

displayWaveform.C
This macro displays the acquired waveforms event-by-event.
Inputs (edit in the macro file):
e dbType — type of Detector Board (will be determined in the data file in next release)
e dataMode — same as in acquireData.C (will be determined in the data file in next release)
e dataFormat — same as in acquireData.C (will be determined in the data file in next release)
* numADCsample — same as in acquireData.C (will be determined in the data file in next release)
* numSkippedEvent — number of events to be skipped
* eviTimeWindow — integer in 80 MHz clock cycle window to be classified as coincident event
e dataFilename - filename of the raw data file

Example: root> .x displayWaveform.C

analyzeRawData.C
This macro reads the waveforms event-by-event and integrates each waveform to calculate its energy. It
also outputs a root file containing an ntuple with the energy and tdc values for every channel. This macro
can only be used when only one 16-channel Detector Board is in the system.
Inputs (edit in the macro file):

e dbType — type of Detector Board (will be determined in the data file in next release)

e dataMode — same as in acquireData.C (will be determined in the data file in next release)

e dataFormat — same as in acquireData.C (will be determined in the data file in next release)

* numADCsample — same as in acquireData.C (will be determined in the data file in next release)

* numSkippedEvent — number of events to be skipped

* eviTimeWindow — integer in 80 MHz clock cycle window to be classified as coincident event

* startBaselineBin — start bin for calculating the baseline of the waveform

* endBaselineBin — end bin for calculating the baseline of the waveform

» startintegratingBin — start bin for calculating the energy of the waveform

~

[BeErkELEY LAS]

* endIntegratingBin — end bin for calculating the energy of the waveform
* dataFilename — filename of the raw data file
¢ rootFilename — output ntuple filename

Example: root> .x analyzeRawData.C

6.3 OpenPET CAT Graphic User Interface
6.3.1Introduction

The OpenPET CAT Graphic User Interface (GUI) is a user interface for the OpenPET CAT data acquisition
framework. It was developed so that users may conveniently use the OpenPET CAT software to gather and
analyze data from the OpenPET system. There are two user interfaces: the OpenPET Control and Analysis - Data
Acquisition (openpet_cat _acq.exe) and the OpenPET Control and Analysis - Root Analyzer
(openpet_cat_ana.exe). The first one is used for configuring the system, gathering data, and generating the
ROOT file. The second one is used for analyzing the ROOT file.

6.3.20penPET Control and Analysis - Data Acquisition

Once the data acquisition application is launched, there are two screens that will appear. One will be the user
interface titled “OpenPET Control and Analysis Tools — Data Acquisition,” and the other is a status window
entitled “ROOT session.” Figure 46 shows this initial display.

The Data Acquisition GUI has four functionalities associated with it. First, it can initialize the system based on the
system configuration files discussed in Section 6.2.1. It also allows the user to acquire data in the Acquire Data
tab and display the waveform events in the Display Waveform tab. In addition, the data file may be converted into
a ROOT file in the Generate ROOT File tab. These four functionalities are discussed in detail below.

0T —

quire Data | Disglay Wavetorm | Generate ROOT File

Systen configuraton e path I

Node Type Command Engine Type Acquire Engine Type: Types: Osusd, 1sethemet
Command Engine 10 Acquire Engine I0:

B Pre 0B Presx 08 Ceafiguraton File

— |

Figure 46: Data Acquisition GUI Initial Display

~

penPET 67 e)

BERKELEY LAB

6.3.2.1 Configure System

The initial screen of the user interface is the system configuration window (Figure 47). This tab will display all
hardware configuration data loaded from the system configuration file discussed in Section 6.2.1. The top section
displays the engine settings and configuration file directory. The bottom section displays the address lists of
Multiplexer Boards, Detector Units, and Detector Boards along with an editable text window for the Detector
Board configuration file. There is also the Reconfigure System button and Initialize System button. The
Reconfigure System button reconfigures the system should any values in the Detector Board configuration file be
changed by the user. The Initialize System button initializes the system. Both buttons are disabled until a system
configuration file is loaded.

! File
Configure System | Acquire Data | Display Waveform | Generate ROOT File |

System configuration file path |

Node Type: I Command Engine Type: I Acquire Engine Type Types: O=usb, 1=ethemet TO p
Command Engine ID | Acquire Engine ID E

section
MB Prefic DB Prefix DB Configuration File
| | |
MB Addresses DB Type.
I
DB Addresses
Bottom
| Tburresc l&” section
l—

JOU Addresses

To initialze system, read in system conSiguration file from fle menu OR reconfigure the system

Figure 47: Sections of the Configuration tab

To load a system configuration file, click on the File menu in the top left hand corner and select Read System
Configuration File. This will open a dialog window allowing the user to select the desired system configuration file
as shown in Figure 48. Once the file is selected, the system will configure. The user may check the status of the
configuration process by reading the ROOT session window. An example of a completed system configuration is
shown in Figure 49.

~

penPET ; —

" OpenPET Control and Analysis Tools - Data Acquisi

Clickhere to
open file dialog

l

Read System Configuration File play Waveforr

System configuration file path:

'9 Open

> |,) |

Lookin: [3 UsersyitoDocumentsiopet_i~] (&) ¢ [EE lif [Multiple fles

File name.

Files of type:
! —

[system_config_small.ta Open
[Airties) ~| Cancel

v

—

Figure 48: Opening system configruation file

| ROOT session

Reading
S/%Ys onfig.txt
Conf iguration directory~.

MB filename prefix=MB
Conf iguring MB: Addr
MBA: Reading MB conficg

DU filename prefix=MBO
Configuring DU: Addr
DUB: Reading DU configuration

DB félz:n.'\m: pref ix~ME

Configuring DB: Addres
DB3: Reading DB conf

Conf iguring enabled channe
Conf iguri timing DAC

ISysten configuration conplete

A\MBB.txt...

A\MBB_DUB.txt ...

.\MB8_DUB_DB3.txt ...

Figure 49: ROOT Session Example

After the system has been configured, the top section will be filled with the appropriate values along with the
configuration file path. Also, the configuration file of the first Detector Board of the first Multiplexer Board will
appear. The MB, DU, and DB addresses highlighted in the lists specify the address of the configuration file being
displayed. To change, select the desired MB, DU, and DB address combination to show that particular Detector

Board’s configuration file.

If the user is satisfied with the current configuration at this point, the user may initialize the system by clicking the
Initialize System button in the bottom right corner. If not, the user can change values in a particular Detector
Board’s configuration file by selecting the correct MB address, DU address, and DB address to open the desired
configuration file as shown in Figure 50. As the user makes changes, the configuration file is saved automatically.
However, to have these changes take effect in the system, the system must be reconfigured by clicking the
Reconfigure System button. Then the system may be initialized.

penPET

69

~

A
ferreee ‘m

Configure System | Acquire Data | Display Waveform | Generate ROOT File |

System configuration Sle path: [C: \Users\jito\Docunents\opet_bitbucket\exanples

Node Type: I 4 Command Engine Type: | 0 Acquire Engine Type: |0 Types: 0=usb, 1=ethemet
Command Engine ID: | 0 Acquire Engine ID: 0

MB Prefic DB Prefix DB Configuration File
 This file gives the hardvare configuration paraneters for al
|“B I!BD_DUO_DB 2 the Detector Boaxd
MB Addresses DB Type wwnChannel Ensblewss
Channel Enable
0 | 16ChLBNL 0 1
1 1
D8 Addresses g i
] 4 1
s 1
[1
7 1
8 1
9 1
10 1
DU Prefix 11 1
12 1
MBO_DU 13 1
14 1
Ri 7 m 15 1
2y scodgweSystem| 15, Lot Eabloses
- ! msu#Tining Thresholdews
Channel DAC(V)
0 0.1
1 0.1
2 0.1
3 0.1
4 0.1
s 0.1
6 0.1
7 0.1
8 0.1
9 0.1
10 0.1
11 0.1
12 0.1
13 0.1
14 0.1 =
i€ o

To initiakze system. read in system configuration file from file menu OR reconfigure the system nitialize System I

Figure 50: Detector Board configuration file

Again, the user can observe the status of the system by reading the terminal window. The command and
response IDs discussed in Section 5 will be printed there. Therefore, the user can determine if the system was
correctly initialized.

Once the system is initialized, the user may now acquire data.

6.3.2.2 Acquire Data

Once the system has been initialized, the Acquire Data button will now activate so the user can acquire data.
There are four parameters the user must set which are the following (shown in Figure 51):

Data Mode — see command ID 0x2201

Data Format — see command ID 0x2203 for configuring oscilloscope mode
Number of ADC samples — 1 to 241 (see command ID 0x2203)
Acquisition time — acquisition time in seconds

penPET "’)

BERKELEY LAB

‘Q

| OpenptT Control and ools - =
! File
Configure System Acquire Data | Display Waveform | Generate ROOT File |

Acquire Data

Data mode: 0
Data format ,_ 0
Number of ADC Samples. I— 2

Acquisition ime (sec)] 10
User input

settings

Datafile Directory. [C. \Users\jito\Docunents cpet_bitbucket\exanples

To actvate Acquire Data buton, you must inibalize the system at least once with current system configuration

Figure 51: Acquire data window

The previous values that were used will be set as default values.

The data file will be saved under the current working directory, which is displayed at the bottom of the window.

The filename itself will have the format yyyymmdd_hhmmss_openpet.dat where the current date and time are
used as the prefixes.

Example: 20140717_090251_openpet.dat
Data file stored on July 17, 2014 at 9:02:51AM

Once the parameters are set, the user may click the Acquire Data button to begin retrieving data.

6.3.2.3 Display Waveform

Figure 52 shows the Display Waveform tab. The functionality of this window is the same as the displayWaveform
macro in Section 6.2.2. The user may load the desired data file to display the acquired waveforms event by event.
The window is arranged vertically in four main sections. The top section is the user input settings. These settings
are required to analyze the data file and are set to be the same values as in the Acquire Data tab. The next
section is the data file section, which includes the button to load a data file and a field that will display the name of
the current data file open. Next is the canvas where the waveforms will be displayed. At the bottom is the event
section where the address and event number of the waveform currently displayed are shown, along with the
buttons to cycle to the next event or to stop and close the data file.

penPET " o

BERKELEY LAB

0
Eile

Configure System | Acquire Data _Display Waveform | Generate ROOT File |

User input Data mode: [0 Dataformat 0 Number of ADC samples 32 Number of skipped events 0
settings Selected Data Fil To actwate buton, read system Data
file
section
Canvas e
Iua [ou o8 Event [I

k Event section

Figure 52: Initial Display Waveform tab

To activate the Load Data File button, the user must first configure the system with the same configuration used
to gather the data file. If a different system configuration file has already been loaded, the user can read in the
correct system configuration file to match the configuration used with that data file. In either case, the steps to
load the system configuration file are equivalent to the instructions in Section 6.3.2 and can be executed while in
the Display Waveform tab.

After activating the Load Data File button, the user must check that the user input settings are correct before
loading a data file. The values stored in that upper header are as follows:

¢ Data Mode — see command ID 0x2201 (default is zero)

¢ Data Format — see command ID 0x2203 for configuring oscilloscope mode (default is zero)

¢ Number of ADC samples — 1 to 241; see command ID 0x2203 (default is 32)

¢ Number of skipped events — number of events to be skipped (default is zero)

Once these settings are correct, the user may then load the data file by clicking on the Load Data File button. A
file dialogue will appear. Select the desired file and open it. Once opened, the first event waveforms will appear in
the canvas, and the address and event number will appear on the bottom. The Next Event and Stop buttons will
also activate at this time.

penPET i e

BERKELEY LAB

| Eile
Configure System | Acquire Data Display Waveform | Generate ROOT File |

Data mode: I 0 Data format: 0

Number of ADC samples: 32

Number of skipped events: 0

Load Data File| To activate button, read system

Selected DataFile: [ay_hithucket/exanples 20141030_114048_openpet .dat I

»

configuration file from File menu

w——_—0_ o a0 o

————_ o0 5 03

——_—— o0 0 &)

Waveform S
of first y -

channel

(channel 0)

———_0_ o @ o0

————_—0_o_®5_ B3

————_0_oe @3 "8

IMBl 0 ou| 0 pB:f 3 I IEv'nlI 1 Stop Next Event
ontro
Eventaddress Eventnumber buttons

Figure 53: Display Waveform

Waveform of
last channel
{channel15)

The waveforms are displayed by channel from left to right, starting in the top left corner. As shown in Figure 53,
the top left waveform is channel 0, the next one to the right is channel 1, and so on with the last channel on the
bottom right corner. The address (MB, DU, DB) of the event currently displayed is shown on the bottom left along
with the current event number. On the bottom right are the control buttons. Clicking on the Next Event button will
display the next event waveforms. The Stop button will close the data file and deactivate the control buttons until

another data file is loaded.

In Figure 53, the number of skipped events is set to the default zero. However, if the user does not want to start at
the beginning of the file, the user may skip to a specific event number. For example, if the user wants to skip 10
events, the user would input ten as the desired number of skipped events and load the data file again. The
opening waveforms would then display event ten as shown below in Figure 54.

penPET

73

| Elle
Configure System | Acquire Data Display Waveform l Generate ROOT File |

Data mode: 0 Dataformat 0 Number of ADC samples 32 Number of skipped events 10

Selected DataFile: [o¢_bitbucket/exanples/20141030_114048_openpet .dat Load DataFile| T0 3t0vme —
< » configuration file from File menu.

ot 0 oot 2 30 o 0_tuh 5 A4 el oo 3 3 0 tut 25)

BETIETI

————0_ o B ———0_ 00 5 B ———_—0 o> 5 o4 ——_—0 o0 8D B

——_0_tv_ R ——_—0_ow)) 9 ———_—0_ow_ B3 VD ———_,_ o5 1

e o) @ 13 et et ool @3 3 it o) 3 et ol &

s [0 ou 0 o8 3 Event [10 Stop | neewnt |

Figure 54: Example highlighting number of skipped events

6.3.2.4 Generate ROOT File

The fourth tab allows the user to generate a ROOT file from the data file. This window is divided into three
sections as shown in Figure 55. The first section is the user input settings that specifies the data parameters. The
second section is the data file section. It contains a text box that will display the file path of the loaded data file
and the Load Data File button so the user can upload the data file. The final section contains the ROOT file
parameters which are bin parameters required for calculating energy histograms that need to be set by the user.
The previous values used are set as the default values.

To generate the ROOT file, the same system configuration file used in gathering the data must be currently
loaded before loading the data file. Also, the user input settings must be the same as those used for gathering
data. The default values are the same values from the Acquire Data tab. Now, the user may click on the Load
Data File button and a file dialogue will appear, allowing the user to select the desired file. Once the file is
selected and the user is satisfied with the ROOT file parameters, he may click on the Generate ROOT File button.
The button will not activate until a data file is loaded. Another file dialogue will appear, and the user can navigate
to the directory where he would like to save the ROOT file. Then he must type in the filename ending with the
file extension “root”. Click save and the ROOT file will begin generating. The sequence of steps is outlined in
Figure 56.

penPET &

sssssss

Configure System | Acquire Data | Display Waveform Generate ROOT Fie |

Userinput * Data mode: [0 Dataformat 0 Number of ADC samples: [32 I
settings
Sesamapsrie | i - Data
| file
section

Energy Calcutation Parameters

Baseline Start Bin | 1
Baseline End Bin I 5

ROOTFile =% """ I_';
Parameters

Figure 55: Generate ROOT File tab

Load DataFile| To activate button, read system

configuration file from File menu.

(@ Open — [ESTEer=x=)

Lookin: [3 Documentsiopet_bvuckene~] () o & Ml ™ Multiple fles
() cewt_cat_settings v [Yme0_ouwo_oso.ta G# scauiveDana
[)20140010_001107_openget cat [JM80_DUS_081.0a Gt snatyzevBrtupie
[J20140911_106207_cpenget dat []M80_DU0_C62 1t Gt sratyzerancass

B MBO_DUO_083 b G sratzeRandas,
8 Convas_1 62 [Jueo_oue_see s G caciayavetom
[Jusose [e0_ouo_sig v [cptayovatomn
[uso_owo [meo_sigea [tecamas_sneon
o[] »
File name 20141030_114048_openpetdat gen | ‘ Generate ROOT File I
Filos of ype: Al fles (*) - cancel |

P s hs — [E=IoT =
Savein: [Documentsiopet_bitoucketa~] () ¢ [EE it [Querwrite

E e m—
98 opanpatreot

o —

9 cpmpaticnravz roct

A openpet_tes2 rot
9 openpet_test2 soot
A cpenpat_tessé soct
3 cranpet_sens root

File name: openpetdchnl.root Save
Files of type: ROOT files (*.root) 'I Cancel

Figure 56: Sequence of steps for saving a ROOT file

penPET § wee f

BERKELEY LAB

The status of the ROOT file may be checked by looking at the ROOT Session window. The window will print out
every one thousand events read and the total bytes read. The ROOT file is completed when the statements
“ROOT file written” and “Data file closed” are printed. An example is illustrated in Figure 57.

200" <o -~ ==

event 399888; Total byte 847476808 a
event 1 400000; Total byte ad 849600000
event 481088; Total bhyte re 851724908
event 4020008; Total byte read 853848000
event » 4830880; Total e read 855972000
event re: 484000; Total » read 858096000
event re 4050080; Total J 6
] 406000; Total
497080; Total
] 488088; Total
event 489080; Total 68
event re 4108080; Total p red 8768840000
event res 411080; Total te re: 872964000
event rea 412088; Total P rea 8758880808
cvent red 413088; Total yt ™ 8772120600
e re 414088; Total » 879336008
4150008; Total te read 881460000
41688085 Total » read 883584808
event 417000; Total e read 885708000
event rea 418088; Total e read 887832000
el 418641; Total byte read 889191360

Data file closed

Figure 57: Generating ROOT File Session

6.3.30penPET Control and Analysis — ROOT Analyzer

Once the ROOT Analyzer application is launched, two screens will appear. One will be the user interface titled
“OpenPET Control and Analysis Tools — ROOT Analyzer,” and the other will be a status window entitled “ROOT
session.” Figure 58 shows the initial startup of the ROOT Analyzer.

' Fhe
Display Hitmap | Display Histograms | Display Flooemap |

] =] ouf <] osf |

Current ROOT File: Numder of Entries.

Figure 58: ROOT Analyzer GUI Initial Display

~

penPET b e)

BERKELEY LAB

The ROOT Analyzer GUI has three functionalities. The first is displaying the hitmap histograms in the Display
Hitamp tab. The second tab titled Display Histograms allows the user to display the energy, baseline, and TDC
histograms for specific channels. Finally, for block sensors, the floodmap may be displayed in the Display
Floodmap tab. These three functionalities are discussed in detail below.

Before any analysis can be displayed, a ROOT file must be loaded first (Figure 59). To do so, the user must click
on the File menu at the top left and select Read ROOT File. This will open a file dialogue displaying only ROOT
files. The user can then select the desired ROOT file to open.

OpenPET Control and i ic

Read ROOT File jlay Histogral

Clickhere to Exit ‘
open file dialog
? Open L2 | B i) .
Lookin: [y Documentsiopet_bitouckete~] (&) e [EE fif ™ Muttiple files
AR openpet-atuple root
‘:E openpet root
File name: |openpetach.root Qpen |
’ Files of type |ROOT files (*.root) =l Cancel I
S FITRSETRYE

Figure 59: Opening ROOT File

6.3.3.1 Display Hitmap

This window is split into three sections. The top section is the Detector Board’'s address. The middle section
displays both the hit histogram and the hitmap. The bottom section displays the filename path of the current
ROOT file open and the number of entries in the Hit by Channel Number histogram.

Once the ROOT file is opened, the hit and hitmap of the first Detector Board from the first Detector Unit of the first
Multiplexor Board will be displayed as shown in Figure 60. To see a different detector board, click the black
arrows on the right side of the MB, DU, and DB address boxes to open a drop down list from which the desired
MB, DU, and DB addresses may be selected. The first DB histograms for any given MB and DU combination is
always displayed first until a different one is selected by the user.

~

penPET " e

BERKELEY LAB

! Flle
Display Hitmap [Dmnla, Hns!ograms] Display Flooumanl
Address‘» we[s =] oufe =] o83 o
Section
Hit by Channel Number Hitmap

10"

1801 60000}

o] :
E 50000

140F 3

1205 0000 3 _Histogram

100F- ; section
E 30000

8o r

60 20000

H 40 E

F 10000}~

E L
:...I...I...l...lux.]... saa sy e I I PP P L PRTIO | PY

% 2 4 6 8 10 12 14 16 ck 10000 20000 30000 40000 50000 60000
Channel Number
Current ROOT File: [nocument s/opet_bi tbucket /exanples/openpetdch . root ~ Number of Entries:[g8g422
ROOTFile : -
Section

Figure 60: Displaying First DB Hit and Hitmap

6.3.3.2 Display Histograms

This window is also divided into three sections. The first is again the Detector Board address section with the
addition of the Channel selection. The second section is the Histogram section, which includes the histogram,
histogram list, and binning options. The final section is the ROOT File section that contains the filename path and
the number of entries in the histogram.

Once the ROOQT file is opened, the energy histogram of the first channel of the first Detector Board will appear
(Figure 61). The user can change which channel to display by clicking on the black arrow next the channel
number box. This will open a drop down menu from which the desired channel can be selected. To change the
Detector Board address, follow the procedure listed at the end of Section 6.3.3.1. To change which type of
histogram is displayed, the user can simply select one from the Histogram List on the right side of the Histogram
section. The user can also adjust the binning of the histogram by changing the starting bin value, ending bin
value, and the number of bins and clicking the Rebin button.

~

penPET " 22

BERKELEY LAB

! Eoe
Display Hitmap Display Histograms | Display Floodmap |
AddreSS mefo ~] oufo ~] oef3 ~] Channel|o ~]
Section
Histogram List
Baseline

r T0C

25000}
C _Histogram

200001 .
B section

15000—— Starting Bin
N [=

‘ 10000)

C [=
r ‘ . Number of Bins

5000~ | 100
L Remnl

] P P PR R | P
-20 =10 0 10 20
Current ROOT File |Docu-ents/o'pet_b)tbuckel/exelples/openpeuch root Numberof Enries IIISGJO
. “ »
ROOTFile |47
Section

Figure 61: Displaying First DB Energy Histogram

6.3.3.3 Display Floodmap

For block detectors, the third window generates a floodmap for a user-defined combination of channels. This tab
will be described left to right based on Figure 62. On the far left are the equations used for calculating the
floodmap values. In the center on top is the address section so the user can select which Detector Board to
display. Beneath the Address Section is the Histogram Section where the floodmap map is displayed. At the
center bottom is the ROOT File Section that shows the current file path. On the top right is the Channel Section.
There are four drop-down lists, one for each channel of the block detector. The channel names A through D
correspond to the A through D values in the Equation Section. Finally, beneath the Channel Section is the Bin
Section, which allows the user to rebin the histogram.

To display a floodmap, the user must select the correct detector board if not already selected by using the steps
outlined towards the end of Section 6.3.3.1. After that, the user must determine which channels are the correct
channels corresponding to variables A through D in the equations. Once the channels are selected, click on the
Display Floodmap button. An example of a floodmap display is shown in Figure 63. The floodmap can also be
rebinned. The user can input the numbers for rebinning the X or Y values in the Bin Section and click the Rebin
button.

~

penPET ” e

BERKELEY LAB

Equ:
Sect|

! Eile
Display Hitmap | Display Histograms

Fquations Used

Address

Dispiay Floodmap | Seenon

tion > X = &eB+coD
_n%g_bl
on Y hey

Channel A -

ChannelB: []
ChanneiC:[— +]
ChannelO: [~ ~]

Display Flooam:lol
m—

Channel
Section

X Y

Histogr,

T

Section

Starting Bin

—

Ending Bin

—

Number of Bins

—

Starting Bin

—

Ending Bin

—

Number of Bins.

—

Current |5 /opat_bitbucket/exanples /o tdch.root
ROOT File: P S = ot »

ROOT File Section

Bin Section

Figure 62: Initial Floodmap Window

! Ele
Display Hitmap | Display Histograms Display Floodmap |

Equations Used: M8:[o

o o L E—

x=_A8
A+B+C+D

Ye bt

Current
ROOT File:

01 02 03 04 05 06 07 08 09 1

s/opet_bitbucket/exanples/openpet dch. root
“« »

Channel A [12 -

Channel B: [13 -
ChannelC:[1a +]
Channel D: [15 v
Display Floodmap
Y
Starting Bin Starting Bin
[0 [0
Ending Bin Enaing Bin
K [
Number of Bins Number of Bins

256 256
Re:un'

penPET

Figure 63: Floodmap Example

80

~

A
feeeeeer ‘Ill

BERKELEY LAB

7 Acknowledgements

Initial funding for the LBNL portion of this work was supported by the Director, Office of Science, Office of
Biological and Environmental Research, Biological Systems Science Division of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. Subsequent work is supported by the National Institutes of Health of
the US Department of Health and Human Services under grant R01 EB016104.

Reference to a company or product name does not imply approval or recommendation by the University of
California or the U.S. Department of Energy to the exclusion of others that may be suitable.

8 Index

16-channel Detector Boardccccvvevveeiieinnnnes 43 Firmware and Software Structurescccc...... 13
AltEra TOOIScoeeieiiiiii e 23 Getting Started.........coeeviiiii 18
Coincidence Unit.........cccoeeeiiiiiiiiiin e, 9 Installing OpenPET Firmware & Software 25
Coincidence Unit Controllerccccccoeviiieeennen. 14 Large System.......ccceiiiiiiiiiii e 11
ComMMANAS......iiiiiiiieee e 51 OPENPET CAT .. 61
Data AcqUIsItionoooiiiiiii e 31 QUICKUSB ..o 20
Data Format........cccccooiiiiiiiiiieee 33 Small Systemcooiiiiiiiii 10
Detector Board............ooocciiiiiiiiiiiiiiiieeeeen 40 Standard Systemcccoiiiiiiii 10
Detector Unit ..o 8 Support Board.........cceueiiiiiieeee e 47
Detector Unit Controllerccccccoeeiiiiiiiiiiiiiieeeen. 14 SUPPOrt Crate ...ooooeeeiiiiieeeee e 8
Downloading Software & Firmware........................ 20 USB-Blasterocueiiiiiiiiii e 23

~

penPET 3 e)

[BeErkELEY LAS]

9 Appendices

9.1 Appendix 1: 16-Channel Detector Board Default Values

As described in Section 5, commands with command id 0x2401 and 0x2403 initialize the DACs and ADCs
respectively with default values. After the Support Crate power is turned on, the entire system is also booted up
using default values.

These default values are specified as follows:

FPGA firmware settings = 0x00000000
System data mode = 0x00000000
Oscilloscope data settings = 0x00000000
Trigger mask (channels 0-15) = OxFFFF
Trigger mask (channels 16-31) = OxFFFF

Default (not previous settings)
Oscilloscope mode

ADC+TDC data format; 32 ADC samples per channel

Trigger enabled for channels 0-15
Trigger enabled for channels 16-31

Register Name / Function Default Value
OF Power Down Configuration No software power down. Allow complete external
hardware power down.
11 LDVS Current Drive Configuration 3.5 mA drive for data bit clock, frame clock and data
12 LVDS Internal Termination Configuration | Internal termination is disabled
14 Low Frequency Noise Suppression Low frequency noise suppression is disabled
24 Analog Input Inversion Analog input inversion disabled
25, 26, Test Pattern Configuration 25/26/27/45 All 4 registers need to be combined to output a test
27,45 pattern. All test patterns are disabled. Test patterns
available:
1) Ramp: repeating full-scale ramp pattern
2) User Defined Fixed Constant:
CUSTOM_PATTERN1_BIT<9:0>
3) Toggle Between 2 Fixed Constants:
CUSTOM_PATTERN1_BIT<9:0> and
CUSTOM_PATTERNZ2_BIT<9:0>
4) Deskew: output 010101010101
5) Sync: output 111111000000
2A Analog Gain Configuration, Ch 1-4 0dB
2B Analog Gain Configuration, Ch 5-8 0dB
42 Clock & Reference Voltage Mode DDR_BIT_CLOCK_PHASE_MODE1
(90 degrees phase shift)
46 Data Format Configuration Straight offset binary mode, LSB first

Table 5: Summary of 16-channel Detector Board ADC default values.

Name / Function Default Value
DEFAULT ENERGY DAC VALUE 0.3
DEFAULT TIMING DAC VALUE 0.3
DEFAULT RAMP DAC VALUE 0.0

Table 6: Summary of 16-channel Detector Board DAC default values.

penPET

82

A
freeeeer ‘m

BERKELEY LAB

~

9.2 Appendix 2: Troubleshooting Diagnostics

Using the command sequence listed in Section 2.4.3 is a simple way to test if your OpenPET system has been
properly setup to take data. However, if you are not properly acquiring data, further diagnosis will be necessary.
This Appendix outlines three basic steps for troubleshooting your OpenPET system. Data analysis for these tests
can be performed with an optional Matlab program called Call_Analyze_OscTestData.m, which is available on the
OpenPET website at http://openpet.lbl.gov/downloads/firmware-software/. You can also develop your own
analysis software or use the OpenPET Control and Analysis optional software tool (see Section 6).

9.2.1Test Digital Communication Chain

The first step in troubleshooting is to test if the basic Support Board and Detector Board digital command and
data communication chain is functioning properly. This test does not require a signal input, since the Detector
Board generates the counter data input internally.

For this diagnostic test, you configure the CDUC and all connected Detector Boards with the Oscilloscope mode
“test communication data format” (address 0010) — mentioned previously in Section 2.4.3 and detailed in Section
5. This differs from standard data acquisition that uses the “ADC plus TDC data format" (address 0000).

First, you need to setup the OpenPET hardware and install the firmware and software by following the instructions
detailed in Section 2. You can then configure the system and acquire test communication data using the basic
OpenPET command sequence shown in Section 2.4.3. For convenience, an example command sequence for a
single Detector Board in slot 3 is shown below:

» opet_cmd_usb 0x2200, 0x4000, 0x00000000, 3000, O
Boot-up DBs: loads the FPGA firmware with default values to all connected Detector Boards.
Correct response: 0xa200, 0x4000, 0x0

» opet_cmd_usb 0x2403, 0x4000, 0x30000000, 1000, O
Initializes all the ADC registers with default values for the Detector Board in slot 3.
Correct response: 0xa403, 0x4000, 0x30000000

» opet_cmd_usb 0x2404, 0x4000, 0x30000106, 1000, O
Sets the ADC gain to 6 dB for all ADCs on the Detector Board in slot 3.
Correct response: 0xa404, 0x4000, 0x30000106

» opet_cmd_usb 0x2401, 0x4000, 0x30000000, 200, 0
Initializes all the DAC registers with default values for the Detector Board in slot 3.
Correct response: 0xa401, 0x4000, 0x30000000

» opet_cmd_usb 0x2402, 0x4000, 0x30602150, 200, O
Sets all DACs to +2.150 V for all channels on the Detector Board in slot 3.
Correct response: 0xa402, 0x4000, 0x30602150

» opet_cmd_usb 0x2205, 0x4000, 0x3000FFFF, 200, 0
Enables the trigger for channels 0-15 for the Detector Board in slot 3.

» opet_cmd_usb 0x2201, 0x4000, 0x00000000, 200, 0
Configures the system data mode to Oscilloscope mode for all connected Detector Boards.
Correct response: 0xa202, 0x4000, 0x00000000

> opet_cmd_usb 0x2203, 0x4000, 0x020000F0, 200, 0
Configures the CDUC and all connected Detector Boards with the Oscilloscope mode settings of test
communication data format and 240 raw ADC samples per channel.

~

penPET ” e)

BERKELEY LAB

Correct response: 0xa203, 0x4000, 0x020000F0

» opet_cmd_usb 0x2209, 0x4000, 0xOOFOFOFO, 200, 0
Clears the event FIFO in the CDUC and all connected Detector Boards to remove data from previous
events.
Correct Response: 0xa209, 0x4000, 0xOOFOFOFO

» opet_acq 5, TestCom.dat, 0
Acquires data from the CDUC through the USB module 0 for 5 seconds and saves the data to file
TestCom_slot3.dat.

However, if you use the optional Matlab code provided on the OpenPET website, then issuing the command
sequence above is not necessary. The Matlab program “Call_Analyze OscTestData.m” (which calls Matlab
program Analyze OscTestData.m) configures the system, acquires the test data, analyzes it, and automatically
generates diagnostic plots (described below).

The program Call_Analyze_OscTestData.m is not entirely user friendly, so you need to edit the file by hand in the
following ways before running the program:
* test_pattern=1 (Tests the digital communication chain, using Osc. mode test communication data format)
* slot_index=3 (Sets Detector Board slot number to be tested. Must test one Detector Board at a time.)
e filename_all={'TestCom_slot3.dat 0’} (Sets name of data file for Analyze OscTestData.m subroutine.)
* system{’opet_acq_usb 5 TestCom_slot3.dat’}; (Sets time and data filename in acq command.)

The program automatically generates two diagnostic plots for this test. The first plot shows the length of a single
data train as a function of the event index. For example, a 16-channel Detector Board with 240 raw ADC samples
per channel has a data train length of 15436 bytes = 4 bytes/word x {2 Starting words + 1 Ending word + 16 DB
channels x (240 ADC samples + 1 TDC sample)}, as shown in Figure 64. This plot can be used to test the data
stability. It should be a flat line, indicating that no data bits have been dropped.

¥ 10
1.644 T T T T

1.5438

1.5438

T
1

1.5437

T
1

1.5436 1

1.5435

T
1

1.5434

1.5433

T
L

1.5432

1 1 1 1
0 500 1000 1500 2000 2500

Figure 64: The event index (x-axis) as a function of the length of a data train in bytes (y-axis). Data
were acquired for 5 seconds using 240 raw ADC samples per channel and test communication data
format.

The second plot shows the waveform for the internally generated counter data of the 600" data train for all 16
Detector Board channels with 240 ADC samples/channel. Specifically, the ADC sample index (x-axis) is plotted
as a function of the ADC value (y-axis) for each channel. The counter values increment from 0 to N-1, the ADC

~

penPET > e)

sample indices increment from 1 to 239, and the plot for each channel should show a straight line with a slope of
1. The plot on the upper left corner corresponds to channel 0, upper right corner to channel 3, and bottom right
corner to channel 15. This plot can be used to test if the Support Board and Detector Board digital command and
data communication chain is functioning properly.

400 400 400 400
200 200 200 200

0 0 0 0
0O 200 400 O 200 400 O 200 400 0O 200 400

400 400 400 400
200 200 200 200
0 0 0 0

0 200 400 O 200 400 O 200 400 0O 200 400
400 400 400 400
200 200 200 200
0 0 0 0

0 200 400 0O 200 400 O 200 400 0O 200 400
400 400 400 400
200 200 200 200

0 0 0 0
0 200 400 0 200 400 0O 200 400 0O 200 400

Figure 65: Waveforms for internally generated counter data, shown for 600™ data train and all 16 DB
channels with 240 ADC samples/channel. For each channel, the ADC sample index (x-axis) is plotted
as a function of the ADC value (y-axis).

9.2.2Test Analog with Internal Trigger

If the first test indicates that the digital command and data communication chain is functioning properly, then the
next step in troubleshooting is to test the analog circuitry using an input signal triggered by an internal clock. First,
you need to attach a custom adapter board on the front of the Detector Board (or skywire) to input an analog
signal. You can then input a signal (such as a sine wave) from a signal generator. Although it is more time
consuming, you should test each channel of each Detector Board separately.

Next, you should configure the system and acquire data using a command sequence similar to that shown in
Section 9.2.1. However, you need to configure the system for this test using the Oscilloscope mode “test analog
data format” (address 0011) and use a different filename, as shown below:

» opet_cmd_usb 0x2203, 0x4000, 0x030000F0, 200, 0
Configures the CDUC and all connected Detector Boards with the Oscilloscope mode settings of test
analog data format and 240 raw ADC samples per channel.
Correct response: 0xa203, 0x4000, 0x030000F0

» opet_acq 5, TestADC.dat, 0
Acquires data from the CDUC through the USB module 0 for 5 seconds and saves the data to file
TestAnalog_slot3.dat.

If you use the optional Matlab code provided on the OpenPET website, then issuing the command sequence is
not necessary. You instead need to edit the file by hand in the following ways before running the program:

~

penPET " g

BERKELEY LAB

e test pattern=2 (Tests the analog signals, using Oscilloscope mode test analog data format)

* slot_index=3 (Sets Detector Board slot number to be tested. Must test one Detector Board at a time.)
* filename_all={TestAnalog_slot3.dat’} (Sets name of data file for Analyze_OscTestData.m subroutine.)
* system{’opet_acq_usb 5 TestAnalog_slot3.dat’}; (Sets time and data filename in acq command.)

The program automatically generates two diagnostic plots for this test. The first plot shows the length of a single
data train as a function of the event index, as described in Section 9.2.1, which can be used to test the data
stability (see Figure 64).

The second plot shows the waveform of the input signal for all 16 channels of the Detector Board. For instance,
Figure 66 shows the waveform plots when a signal generator was used to input a sine wave into Channel 0 only
and data were acquired with 240 raw ADC samples per channel and test analog data format. This plot can be
used to test if you can output an analog signal without signal shape deformation or saturation and an acceptable
baseline. In addition, this test can be used to investigate cross talk between channels.

800 616 615 618 —
700 6158 6148 617.8
6156 6146 B176
600
6154 6144 B17.4

L 6152 6142 6172

400 615 B4 B17
0 0 0

620 610 B17 618

619.8 6098 617.8

6165
6196 609.6 B176

619.4 £09.4 617.4

619.2 6092 J 6155 6172

619 609 615 617
0 0 0

6165 6145 6105 6185

616 614 610 618

6155 6135 6095 6175

615 613 509 817
0 E 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Jenny Jot2,in dat
B15 614 612 616

6148 6135 1138 6155

6146 B116
613 615
614.4 6114

6125

614.2 6145

614 612 61 B14
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 1] 50 100 150 200 250

6112

Figure 66: Waveforms for all 16 DB channels, when a sine wave was inputted into only channel 0 and
data were acquired with 240 raw ADC samples/channel, test analog data format, and internal clock
trigger. The sine wave had a frequency of 350 kHz and amplitude of 400 mV. For each channel, the
sample number index (x-axis) is plotted as a function of amplitude (y-axis).

9.2.3Test Trigger

If you have confirmed that your digital communication chain and analog circuitry are functioning properly with the
two tests described above, then you need to check your detector signals and trigger. Specifically, you should
check your trigger mask and DAC settings to make sure that your trigger thresholds are set properly for the input
signals from your detector module — see Section 5 for more details on how to set and read the trigger mask.

~

penPET » e)

BERKELEY LAB

