
!"#$%&'(&)*+,(-./"0#*1(2##03$4(

!"#$%&'(")'*+,**-'.+*.'
/01"#203&'/"45$31$'6$57$8$)'9"#203"8'/":05"#05)'

'
'

'
;<$'=5$%$3#"#203%'2318>?$?'<5'"5$'@50A'"'%A"88-'
23@05A"8'4057%<0='42#<'#<$'/69/'B=$3CD;'?E80=$5%'
"3?'"'@$4'D"58)'F?0=#$5%GH%$5%I';<$'103#$3#'2%'
=5$82A23"5)'23'3"#>5$'"3?'A")'103@821#'42#<'
?01>A$3#"#203'"3?'=5$%$3#"#203%'=0%#$?'03'#<2%'
4$:%2#$'23'#<$'@>#>5$I'

openPET Early Adopters Meeting Agenda
Dates: May 10-11, 2012
Location: Lawrence Berkeley Laboratory, Berkeley, California
Room number: Building 55-121, Room 117 (Conference Room)

Thursday, May 10, 2012
Time Item Presenter
9:30-10:00 Setup

10:00-10:50 Introduction and Overview of Groups
 Goal: Introduce groups to each other and understand

how each group plans to make use of the OpenPET
system

10:00-10:20 Introduction of LBL Group and development history
of OpenPET

Bill Moses

10:20-10:35 Overview of Manitoba Group and Plans Andrew Goertzen
10:35-10:50 Overview of Davis Group and Plans Simon Cherry

10:50-11:00 Break

11:00-12:30 Overview of System Hardware
 Goal: Provide an understanding of the technical

specifications and capabilities of the system and how
the pieces communicate with each other.

11:00-11:30 Detector board design Seng Choong
11:30-12:00 Support crate Bill Moses
12:00-12:30 Board and system level communication overview Qiyu Peng

12:30-13:30 Lunch

13:30-15:30 Software/Firmware Framework and Demonstration
 Goal: Provide an understanding of how to interface

with the OpenPET, including writing of firmware,
uploading of firmware, and acquisition of data from
system.

13:30-14:30 Overview and discussion of Software/Firmware
Framework

Qiyu Peng

14:30-15:30 Demonstration of Hardware and Existing
Programming Tools

Qiyu Peng

15:30-15:45 Break

15:45-17:15 Functionality Requirements
 Goal: Define what functions are required to enable

the acquisition of data using an OpenPET system.

15:45-16:15 Overview of desired functionality requirements from
an end-user’s perspective

Andrew Goertzen

Thursday, May 10, 2012
16:15-17:15 Discussion to define and prioritize requirements

17:15-17:30 Break

17:30-18:30 Software/Firmware Management
 Goal: Provide overview of web-based tools for

communication between users.

17:30-18:00 Website Description Jenny Huber
18:00-18:30 Overview of wiki and software/firmware

management
Martin Judenhofer

19:00-21:00 Group Dinner
 Location and timing TBD.

Friday, May 11, 2012
Time Item Presenter
9:00-10:15 Collaboration Structure and Communication
 Goal: Define how user groups will interact with each

other and LBL.

 Discussion topics:
Frequency and method of communication.
Progress monitoring and documenting.
Authorship on publications.

10:15-10:30 Break

10:30-12:30 Data, Communications and Command Specifications
 Goal: Discuss and define some of the more in-depth

technical aspects of the operation of the system.

10:30-11:30 Data format standards Qiyu Peng
11:30-12:30 Communications and Command Specifications Qiyu Peng

12:30-13:30 Lunch

13:30-17:00 Discussions and Miscellaneous
 Goal: Address all items left over.
13:30-15:00 Division of tasks discussion
15:00-15:15 Break
15:15-17:00 TBD

A Flexible Electronics System
for Radiotracer Imaging

Introduction & Overview
May 10, 2012

William W. Moses

Vision
General-Purpose Electronics & Software

for Nuclear Medical Imaging Cameras

Open Source
•  Hardware, Firmware, and Software
•  Schematics, Gerbers, BOM,…

Active User Community
•  Share Software and Expertise
•  Module, Calibration, DAQ, Display,…

http://OpenPET.LBL.gov

All Detector Outputs Look the Same

•  Tremendous Variation in How Outputs Are Combined
! Combine Outputs in Firmware

Voltage

Time

Extract Timing Signal
from Leading Edge

Extract “Energy” from
Area Under the Curve

100 mV – 2 V

Electronics System Requirements

Like Open Source Software

High-Performance
•  # of Channels, Rate, Energy, Timing, …

Very Flexible
•  Type of Detector, Camera Configuration,
Event Word Definition

User-Modifiable
•  Schematics, Source Code, Knowledge Base

User-Friendly
•  Instructions, Documentation, Can Buy Boards

Support
Board

Detector
Board

Host PC

Detectors

µP

OpenPET Architecture (Small System)
32 Analog & 16 Digital

Signals In 8 DBs In

Supports 64 Block Detectors

Detector Unit

Data
Control

OpenPET Bus }

Support Crate

“VME Crate,” Support Board, and 3 Interface Boards

Power and Fans

Em
pt

y

0

Support Board

Em
pt

y

1

Em
pt

y

2

Em
pt

y

3

Em
pt

y

4

Em
pt

y

5

Em
pt

y

6
Em

pt
y

7

Em
pt

y

8

H
os

t P
C

 In
te

rf
ac

e

9

U
se

r I
O

10

D
eb

ug
gi

ng

11

Detector Unit (in Small System)

Support Crate and Up To 8 Detector Boards

Power and Fans

D
et

ec
to

r B
oa

rd

Support Board

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

Em
pt

y

H
os

t P
C

 In
te

rf
ac

e

U
se

r I
O

D
eb

ug
gi

ng

0 1 2 3 4 5 6 7 8 9 10 11

Small System

Detector
Unit

Host PC

Support
Board

Detector
Board Coincidence

Host PC

Detectors

µP µP

OpenPET Architecture (Standard System)
32 Analog & 16 Digital

Signals In 8 Boards In 8 DUs In

•  Supports 512 Block Detectors
•  Adds Coincidence Unit

Up to 8 Detector Units
Coincidence

Unit

Data
Control

OpenPET Bus }

Support
Board

Detector
Board Multiplexer Coincidence

Host PC

Detectors

µP µP

OpenPET Architecture (Large System)
32 Analog & 16 Digital

Signals In 8 Boards In 8 DUs In 8 MUX In

Up to 64 Detector Units

µP

Coin. Unit

•  Supports 4096 Block Detectors
•  Adds Multiplexers

Data
Control

OpenPET Bus }

Detector Unit (in Standard & Large Systems)

Small System Detector Unit and HS Transceiver Board

Power and Fans

D
et

ec
to

r B
oa

rd

Support Board

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

D
et

ec
to

r B
oa

rd

H
os

t P
C

 In
te

rf
ac

e

U
se

r I
O

D
eb

ug
gi

ng

0 1 2 3 4 5 6 7 8 9 10 11

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

Coincidence Unit

Support Crate and Up To 8 HS Transceiver Boards

Power and Fans

Support Board

Em
pt

y

H
os

t P
C

 In
te

rf
ac

e

U
se

r I
O

D
eb

ug
gi

ng

0 1 2 3 4 5 6 7 8 9 10 11

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

H
ig

h-
Sp

ee
d

Tr
an

sc
ei

ve
r

Optional
(Output)

Transceiver
Board

in Slot 8

Standard System

Coincidence
Unit

Host PC

Detector
Unit

Detector
Unit

… (up to eight) Detector
Unit

One Detector Unit
per Coincidence Slot

Large System

Coincidence
Unit

Host PC

Detector
Unit

Detector
Unit

… (up to 64
Detector Units)

Detector
Unit

Detector
Unit

Up to 8 Detector Units
per Coincidence Slot

© 2012, M.S. Judenhofer, UC Davis,
Department of Biomedical Engineering

Proposed System to use openPET

Martin S. Judenhofer, PhD
Department of Biomedical Engineering, University of

California-Davis, Davis, CA

OpenPET Meeting, Berkeley, May 11-12, 2012

© 2012, M.S. Judenhofer, UC Davis,
Department of Biomedical Engineering

Proposed System to use openPET:
DOI based PET scanner

•   Use small crystals blocks
•   Use dual ended readout to

obtain depth of interaction (DOI)
using PSAPDS

•   4-ring system, each ring 24
blocks (96 blocks total)

© 2012, M.S. Judenhofer, UC Davis,
Department of Biomedical Engineering

Block Detector Principle

•   Each PSAPD has 4 corner signals

•   Sum of all 8 signal is energy

•   Ratio of Sum1 to Sum2 is DOI

•   X/Y is calculated from ABCD and sum

! 8 channels need to be sampled

© 2012, M.S. Judenhofer, UC Davis,
Department of Biomedical Engineering

OpenPET Detector-Board Usage

•   Per Block 8 digitizer
channels are required

•   Sum of all 8 channels can be
used as trigger

•   All 8 signals are used to
generate X/Y/E/DOI

•   Signal duration ~ 200-300 ns
•   Rise time 40-60 ns

32 channel board

FPGA

8
ADC Amp

8
ADC Amp

8
ADC Amp

8
ADC Amp T

o C
oincidence B

oard

© 2012, M.S. Judenhofer, UC Davis,
Department of Biomedical Engineering

Requirements

Data Processing Requirements

•   Need to sample about 10-15 consecutive samples per event
•   No CFD ! Triggering on leading edge ! large time walk ! additional

processing required to improve timing
•   May require multiple X/Y look up tables for crystal positions depending on

DOI depth (3-5)

Hardware

•   4 Blocks per detector board
•   24 Detector boards
•   3 Support boards to read all 24 detector boards (8 per board)
•   1 coincidence board

A Flexible Electronics System
for Radiotracer Imaging

Support Crate
May 10, 2012

William W. Moses

Support Crate

“VME Crate,” Support Board, and 3 Interface Boards

Power and Fans

Em
pt

y

0

Support Board

Em
pt

y

1

Em
pt

y

2

Em
pt

y

3

Em
pt

y

4

Em
pt

y

5

Em
pt

y

6
Em

pt
y

7

Em
pt

y

8

H
os

t P
C

 In
te

rf
ac

e

9

U
se

r I
O

10

D
eb

ug
gi

ng

11

Support Crate Form Factor
Same as 12-Slot VME 6-U Crate

•  Connectors in Different Locations
•  Avoid accidently plugging in VME boards!

•  8 Input Slots (Slots 0–7)
•  Detector Boards if Detector Unit
•  High-Speed Transceivers if Coincidence Unit

•  4 Slots for “Plug-In” Boards
•  High-Speed Transceiver (Slot 8)
•  Interface to Host PC (Slot 9)
•  User IO (Slot 10)
•  Debugging (Slot 11)

Plug-In Boards
Host PC Interface (Slot 9)

 Front panel Ethernet connector, USB2 connector, SD card connector, 3 reset
switches, 20 LEDs, detector bias voltage input (BNC connector, –100 V to
+100 V).

User I/O (Slot 10)
 Front panel connectors for two RS-232 cables, an External Clock input
(SMA), and 48 external digital IO lines. A jumper sets the logic levels for all
48 lines to 3.3 V or 5.0 V. Each Support Board FPGA (the Master and both
Slaves) is connected to 16 lines. Groups of 4 adjacent lines are set via a DIP
switch to be inputs or outputs.

Debugging (Slot 11)
 Front panel JTAG connector (that can be used to program the FPGAs
directly), four Aligent 16902B connectors for logic analyzers (two connect to
the Main FPGA, and one to each of the two Slave FPGAs), and 30 user-
defined LEDs (10 connected to each of the 3 FPGAs).

Brings Support Board Connectors to Front Panel

High-Speed Transceiver Board

•   Each OpenPET Bus can be programmed to be either an
input or an output

•   The FPGA can act as a multiplexer or fan-out
•   This board can plug into Slot 0–7 (as an input to the SB)

or into Slot 8 (as an output from the Support Board)
•   NIOS Core supervises communication and control

Conceptual Design

Front Panel Connection to
Support Board OpenPET Bus

Se
ria

l F
ib

er
 to

 P
ar

al
le

l

FPGA

OpenPET Bus
OpenPET Bus
OpenPET Bus
OpenPET Bus
OpenPET Bus
OpenPET Bus
OpenPET Bus

NIOS
Core

OpenPET Bus

Support Board Event & Communication Flow

Detector Board 0

Detector Board 1

Detector Board 2

Detector Board 3

Detector Board 4

Detector Board 5

Detector Board 6

Detector Board 7

Slave
FPGA Coincidence

Board

Host
PC USB &

Ethernet

Slave
FPGA

Master FPGA

16 each
Data Only

8 each

8 each

NIOS
Core

•   Input and output of each functional unit is OpenPET Bus
(sometimes with additional IO lines)

•   VHDL handles all real-time multiplexing & data transfer
•   “NIOS Core” is a CPU inside the FPGA that runs C,

handles communication and control

OpenPET Bus

Control Only

Detector Board to Support Board Bus IO

Detector Board Support Board

OpenPET Bus
Singles Event Word

Singles Event Word

Singles Event Word

Singles Event Word

Spare Digital Lines

Clock In
Time Slice Boundary In

Clock Out
Time Slice Boundary Out

Clock

CTRL_CS
CTRL_CLK

CTRL_DI
CTRL_DO

Control

nCONFIG
DCLK

DATA0
CONF_DONE

FPGA
Programming

Clock Conditioning

NIOS Core

VHDL
Code

8

4

4

4

4

Connector Between Detector Board and
Support Board (OpenPET Bus)

Power & FPGA
Programming

Sometimes Omitted
Data coming into a
board clocked by
clock_in / slice_in,
Data coming out of a
board clocked by
clock_out / slice_out

Page 1 of SB Schematic

Will Use “Cartoon” of Schematic (Old Eyes…)

Self-Explanatory Connections

Master
FPGA

Slave
FPGA

•   LED Bars – User definable, no present allocation
•   DIP Switch – User definable, no present function
•   OpenPET Data and Control sent through FPGA, clock

sent through separate conditioning / distribution circuits

Slave
FPGA

Power

LED Bar
Dip Switch

Temp Sensor

10

LED Bar
10

LED Bar
10

8

OpenPET

Host PC Interface Board Connections

Master
FPGA

Slave
FPGA

•   SD Card Connector on both SB and Interface Board, but
only one can be plugged in at any given time

•   QuickUSB Connector on both SB and Interface Board,
but only one can be plugged in at any given time

•   Ethernet Connector only on Interface Board

Slave
FPGA

QuickUSB

4

Ethernet

SD Card
25

User IO Board Connections

Master
FPGA

Slave
FPGA

•   Each FPGA has 16 data lines plus 4 direction lines
•   These lines go to the User IO Board, and are buffered on

that board
•   The two RS-232 ports and the External Clock are not

shown on the block diagram

Slave
FPGA

20

User IO
20

User IO
20

User IO

Debugging Board Connections

Master
FPGA

Slave
FPGA

Slave
FPGA

Logic Analyzer
17 17

Logic Analyzer

17
Logic Analyzer

17
Logic Analyzer

•   Each Logic Analyzer connector has 16 data lines plus 1
clock line

•   These lines go to the Debugging Board, and are not
buffered

•   JTAG connection described separately

Memory for NIOS Core (Microprocessor)

Master
FPGA

Slave
FPGA

•   DDR-2 used like “PC RAM memory” by NIOS Core
•   SD Card is primary “PC hard disk” for NIOS Core
•   FLASH is secondary “PC hard disk”

(in case of problems with SD Card)

Slave
FPGA

64 MB FLASH

1 GB DDR-2 SD Card

Memory for “VHDL” Part of FPGA

Master
FPGA

Slave
FPGA

•   SRAM is fast, with fixed latency (look-up time)
•   Used for lookup tables, etc. for “VHDL” (real-time)

FPGA code

Slave
FPGA

4 MB SRAM

2 MB SRAM 2 MB SRAM

FPGA Programming Connections

Master
FPGA

Slave
FPGA

•   All 3 FPGAs programmed by EPCS64 Memory
•   EPCS64 programmed by PC via connector on SB, or
•   EPCS64 programmed directly by FPGA

Slave
FPGA

EPCS64 Connector

Program
from PC

Program
from FPGA

FPGA JTAG Connections

Master
FPGA

Slave
FPGA

•   Can load equations into one FPGA via JTAG connector
(on Support Board or Debugging Board)

•   Jumpers select which FPGA programmed
•   Can also run NIOS debugger through JTAG

Slave
FPGA

JTAG
Connector

Page 7 of SB Schematic

Non-Trivial, But Detailed Instructions…

Clock Distribution

Detector
Unit

Host PC

Coincidence
Unit

Host PC

Detector
Unit

Detector
Unit

Detector
Unit

•   Three Possible Sources On Each Support Board:
1) On-Board Oscillator, 2) Upstream Board, 3) Debug Connector

•   Jumpers select Source on Each SB
•   “On-Board Oscillator” Should Be Used on the Top Level SB,

“Upstream Board” for the Rest (Exactly 1 Oscillator per System)

Small System Standard or Large System

“On-Board Oscillator”

“Upstream Board”

!"#$%&#'()!$*+,-./,#$/'0$
123./,#$*,/-#.2,4!

"#$%!&'()!

*+$!,-.,,/!0-,0!

1'2%#3'4'(56!!

•   1'7#+8#7#5$!
•   95+8#7#5$!
•   :7';#8#7#5$!!
•   9<+7+8#7#5$!
•   =>4?+@8#7#5$!

•   9#4?7#<#5$!!

9$65'4!=>(A)%3+@>(!

•   BC'!D?'(&EB!6$65'4!#6!'66'(@+77$!+!<>4?%5'3!

('5F>3G!F#5C!+!53''!5>?>7>)$H!!

95+(I+3I!6$65'4!<>(A)%3+@>(!

J+3)'!6$65'4!<>(A)%3+@>(!

94+77!6$65'4!<>(A)%3+@>(6!

*#;'I!6$65'4!<>(A)%3+@>(6!

526$$,#72--#'0#0$

1896#-$"/,0./,#$96,:76:,#!

;#-2,8!
K(!*+#(!:&LMN!

:7+6C!4'4>3$!

E&=9OP!Q+6C!4'4>3$!

OP*R!Q+6C!4'4>3$!

1M*!

P*R!91M*!

,LR!SS10.9D.SK**!9S1M*!

K(!KD!:&LM!,N!

1M*!

0*R!91M*!

K(!KD!:&LM!0N!

1M*!

0*R!91M*!

1<$7/,0$!
;+97#==/'#2:9$0#>+7#9$!
&>F'3!4>(#5>3!

B'4?'3+5%3'!6'(6>36!

BF>!190T0!#(5'3U+<'6!

<+?+6/=$@%$!
K(!*+#(!:&LMN!

,O!8#56!I#)#5+7!KD!VP!8#56!I#3'<@>(!<>(53>7W!

,-!R#56!JES!8+3!!

BF>!7>)#<!+(+7$X'3!<>(('<5>36!V,OY,!8#56!'+<CW!

K(!KD!:&LM!,N!

,O!8#56!I#)#5+7!KD!VP!8#56!I#3'<@>(!<>(53>7W!

,-!R#56!JES!8+3!!

D('!7>)#<!+(+7$X'3!<>(('<5>3!V,OY,!8#56!'+<CW!

K(!KD!:&LM!0N!

,O!8#56!I#)#5+7!KD!VP!8#56!I#3'<@>(!<>(53>7W!

,-!R#56!JES!8+3!!

D('!7>)#<!+(+7$X'3!<>(('<5>3!V,OY,!8#56!'+<CW!

*+,-./,#$/'0$923./,#$96,:76:,#!

R3#'U!K(53>I%<@>(!5>!ZKD9!

R3#'U!K(53>I%<@>(!5>!ZKD9!

NIOS $ PC$

The real-time micro-processor with FPU! CPU!

Volatile memory! RAM!

Non-volatile memory! Hard disk!
Peripherals (analog and digital IO)! Parallel, serial IO and etc!

None or Nios II IDE running in the Host PC ! Key board and monitor!

Programming Tools / Environment!

DB! DUC! MB! CUC! Host PC!

FPGA Firmware! X! X! X! X!

Embedded
Microprocessor
Software !

X! X! X!

PC Software ! X!

!"#$%&'())*%##+,-'#$*($%-+%#!

•   !"#$%&'()*+,-./0)*'1.)+2%'3C>65!<>4?%5'3!4'
.   M!53''!I+5+!653%<5%3'!>U!5C'!FC>7'!6$65'4!!

.   M!I+5+!653%<5%3'!<>(5+#(6!I'5+#76!>U!+77!(>I'6!#(!
5C'!53''!V(>I'!5$?'6/!+86>7%5'!+II3'66'6/!

<>(('<@>(!65+5%6!+(I!'5<HW!!

.   K(5')3#5$!>U!+77!5C'!C+3IF+3'!I'[#<'6!<>(('<5'I!
5>!+77!5C'!(>I'6!

!"#$%&'())*%##+,-'#$*($%-+%#!

•   5)6%'$"1%'.%,7#$%.'/*6'/8#)2-$%'/66.%##'
.%,7#$%.!

E;+4?7'6!

!"#$%&'())*%##+,-'#$*($%-+%#!

•   9:#1.7*,'()*+,-./0)*'1.)+2%'
.   D\6?3#()!=>(('<@>(!95+5%6!!
.   D\6?3#()!E(+87']I#6+87'!95+5%6!!
.   D\6?3#() 6̂!!(>I'!5$?'6!+(I!+86>7%5'!+II3'66'6!

Absolute address assignment strategy

•   95'?!,N!+66#)(!+86>7%5'!+II3'66'6!5>!+77!(>I'6!
<>(('<5'I!5>!5C'!6$65'4!V>3!'65+87#6C!

D\6?3#()!<>(A)%3+@>(!?3>A7'W!

•   95'?!0N!_>65!&=!3'+I!>\6?3#()!<>(A)%3+@>(!
?3>A7'!U3>4!+77!(>I'6!+(I!'65+87#6C!6$65'4!

<>(A)%3+@>(!?3>A7'!

!"#$%&'./&&(,)#'(,)'*%#0/,#%#!

•   ;).&/$')<'#"#$%&'()&&/*6#'/*6'.%#1)*#%#!

0000: Command/response for CUC node
0001: Command/response for MB node
0010: Command/response for DUC node
0011: Command/response for DB node
0100: Command/response for CDUC node (for small size system configuration)
0101~1110: unused (users can define command/response by themselves).
1111: reserved for host computer

=7#$')<'>)&&/*6#?.%#1)*#%#'<).'>@>A'
BCA'DCA'>D@>'*)6%#!

•   A2.$=#>#=$"/,0./,#$0#>+7#9$72'6,2=$
72--/'09$

•   1896#-$72'B?:,/C2'$72--/'09$

•   D+?"E=#>#=$/&&=+7/C2'E9+B#0$72--/'09$

J#65!4>I'!I+5+!

•   D/$/'/66.%##7*,'#$./$%,7%#$
!!!K(!5C'!`-.8#5!D?'(&EB!7#65!4>I'!I+5+/!5C'3'!+3'!00!

8#56!+77><+5'I!U>3!+II3'66#()H!

.   M4>()!5C'4/!,P!8#56!+3'!65+(I+3I!+II3'66!8#56H!

.   +(!';53+!`.8#5!+II3'66!#6!3'6'3['I!+(I!<+(!8'!
3'I'A('I!8$!5C'!D?'(&EB!%6'36H!

00: individual channel data addressing mode

01: crystal data addressing mode

10~11: user defined data addressing mode

E*67F76-/2'(G/**%2'6/$/'/66.%##7*,'
&)6%'3HH4!

>."#$/2'6/$/'/66.%##7*,'&)6%!

=7#$'&)6%'6/$/'<).&/$$
•   >)7*(76%*(%'%F%*$#'6/$/'<).&/$!

Bit 79: 1 (1: coincidence event data format flag)

Bit 78~76: MB address bits (3 bits)

Bit 75~73: DUC address bits (3 bits)

Bit 72~70: DB address bits (3 bits)

Bit 69~65: Channel address bits (5 bits)

Bit 64~57: User defined address bits (8 bits)

Bit 56~54: DOI data bits (3 bits)

Bit 53~42: TDC data bits (12 bits, LSB: 25ps)

Bit 41~40: unused bits (2 bits)

Bit 39: valid bit (1: valid coincidence data; 0: invalid coincidence data)

Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16~14: DOI data bits (3 bits)

Bit 13~2: TDC data bits (12 bits, LSB: 25ps)

Bit 1~0: unused bits (2 bits)

!7*,2%'%F%*$#'6/$/'<).&/$!

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 1 (1: single event data format)

Bit 77~73: 00000 (5 bits) (time mode)

Bit 72~40: unused bits (33 bits)

Bit 39: valid bit (1: valid single event data; 0: invalid single event data)

Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16~14: DOI data bits (3 bits)

Bit 13~2: TDC data bits (12 bits, LSB: 25ps)

Bit 1~0: unused bits (2 bits)

Time Mode$

!7*,2%'%F%*$#'6/$/'<).&/$!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5!Q+)W!

R#5!aacaTN!----,!Vd!8#56W!V'('3)$!4>I'W!

R#5!a0cP-N!!%(%6'I!8#56!VTT!8#56W!

R#5!TbN![+7#I!8#5!V,N![+7#I!6#()7'!'['(5!I+5+e!-N!#([+7#I!6#()7'!'['(5!I+5+W!

R#5!T`cTON!!*R!+II3'66!8#56!VT!8#56W!

R#5!TdcTTN!!Sf=!+II3'66!8#56!VT!8#56W!

R#5!T0cT-N!!SR!+II3'66!8#56!VT!8#56W!

R#5!0bc0dN!!=C+(('7!+II3'66!8#56!Vd!8#56W!

R#5!0Pc,aN!!f6'3!I'A('I!+II3'66!8#56!V`!8#56W!

R#5!,Oc,PN!!SDK!I+5+!8#56!VT!8#56W!

R#5!,Tc0N!!E('3)$!I+5+!8#56!V,0!8#56W!

R#5!,c-N!!%(%6'I!8#56!V0!8#56W!

)'#,?8$-20#$

!7*,2%'%F%*$#'6/$/'<).&/$!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5!Q+)W!

R#5!aacaTN!---,-!Vd!8#56W!V1+F!MS=!I+5+!4>I'W!

R#5!a0ca-N!!VT!8#56W!

---N!1+F!MS=!I+5+!U3>4!+!6#()7'!<C+(('7e!!

--,N!1+F!MS=!I+5+!U3>4!+77!T0!<C+(('76e!

-,-c,,,N!%(%6'I!

R#5!ObcdbN!!5>5+7!MS=!I+5+!<>%(5!V,,!8#56W!V4+;#4%4N!T0!<C+(('76!g!OP!6+4?7'6!h!0-P`W!

R#5!d`cP`N!!<%33'(5!MS=!I+5+!<>%(5!V,,!8#56W!!

R#5!PacP-N!!1'6'3['I!8#56!V`!8#56W!

R#5!TbN![+7#I!8#5!V,N![+7#I!6#()7'!'['(5!I+5+e!-N!#([+7#I!6#()7'!'['(5!I+5+W!

R#5!T`cTON!!*R!+II3'66!8#56!VT!8#56W!

R#5!TdcTTN!!Sf=!+II3'66!8#56!VT!8#56W!

R#5!T0cT-N!!SR!+II3'66!8#56!VT!8#56W!

R#5!0bc0dN!!=C+(('7!+II3'66!8#56!Vd!8#56W!

R#5!0Pc,aN!!f6'3!I'A('I!+II3'66!8#56!V`!8#56W!

R#5!,Oc,PN!!SDK!I+5+!8#56!VT!8#56W!

R#5!,Tc0N!!1+F!MS=!I+5+!8#56!V,0!8#56W!

R#5!,c-N!!f(%6'I!8#56!V0!8#56W!

F/.$G<H$0/6/$-20#$

!7*,2%'%F%*$#'6/$/'<).&/$!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5!Q+)W!

R#5!aacaTN!---,,!Vd!8#56W!V95+(I+3I!M()'3.7>)#<!4>I'W!

R#5!a0cP-N!!%(%6'I!8#56!VTT!8#56W!

R#5!TbN![+7#I!8#5!V,N![+7#I!6#()7'!'['(5!I+5+e!-N!#([+7#I!6#()7'!'['(5!I+5+W!

R#5!T`cTON!!*R!+II3'66!8#56!VT!8#56W!

R#5!TdcTTN!!Sf=!+II3'66!8#56!VT!8#56W!

R#5!T0cT-N!!SR!+II3'66!8#56!VT!8#56W!

R#5!0bc0dN!!=C+(('7!+II3'66!8#56!Vd!8#56W!

R#5!0Pc,aN!!f6'3!I'A('I!+II3'66!8#56!V`!8#56W!

R#5!,ON!!%(%6'I!8#56!V,!8#56W!

R#5!,dc`N!!i!V`!8#56W!

R#5!ac-N!!j!V`!8#56W!

16/'0/,0$G'?#,E=2?+7$-20#$

!7*,2%'%F%*$#'6/$/'<).&/$!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5W!

R#5!aacaTN!--,--!Vd!8#56W!VB'65!4>I',W!

R#5!a0cP-N!!-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-!VTT!8#56W!

R#5!Tbc-N!!-,VP-!8#56W!

!#96$-20#9$

!7*,2%'%F%*$#'6/$/'<).&/$!

F#9#,>#0$-20#9$IJK$-20#9L$

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5!Q+)W!

R#5!aacaTN!--,-,c-,,,,!Vd!8#56W!!

R#5!a0c-N!5>!8'!I'A('I!!

M9#,$0#B'#0$-20#9IJN-20#9L$$

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!,!V,N!6#()7'!'['(5!I+5+!U>34+5!Q+)W!

R#5!aacaTN!,----c,,,,,!Vd!8#56W!!

R#5!a0c-N!%6'3!I'A('I!!!

!7*,2%'%F%*$#'6/$/'<).&/$!

B#4'!65+5%6!F>3I!!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!-!V-N!65+5%6!F>3I6!U>34+5!Q+)W!

R#5!aacaTN!-----!Vd!8#56W!VB#4'!F>3I!U>34+5W!

R#5!a0cTbN!!,%6!@4'3!VTP!8#56W!

R#5!T`c-N!!3'6'3['I!VTb!8#56W!

E['(5!3+5'!65+5%6!F>3I!!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!-!V-N!65+5%6!F>3I6!U>34+5!Q+)W!

R#5!aacaTN!----,!Vd!8#56W!V'['(5!3+5'!U>34+5W!

R#5!a0cP-N!!3'6'3['I!VTT!8#56W!

R#5!Tbc-N!!5>5+7!(%48'3!>U!'['(56!VP-!8#56W!

!$/$-#'I).6#'<).&/$$

!7*,2%'%F%*$#'6/$/'<).&/$!

B'4?'3+5%3'!65+5%6!F>3I!VT!I#)#56/!3+()'!U3>4!-H,k=!cbbHbk=W!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!-!V-N!65+5%6!F>3I6!U>34+5!Q+)W!

R#5!aacaTN!---,-!Vd!8#56W!V5'4?'3+5%3'!U>34+5W!

R#5!a0ca,N!!ii!V0!8#56W!V--N!=f=!5'4?'3+5%3'e!-,N!*R!5'4?'3+5%3'e!,-N!Sf=!

5'4?'3+5%3'e!,,N!SR!5'4?'3+5%3'W!

R#5!a-cO`N!!*R!+II3'66!8#56!VT!8#56W!

R#5!OacOdN!!Sf=!+II3'66!8#56!VT!8#56W!

R#5!OPcO0TN!!SR!+II3'66!8#56!VT!8#56W!

R#5!O,cd`N!!;,-!5'4?'3+5%3'!VP!8#56!M9K=!<>I'W!

R#5!dacdPN!!;,!5'4?'3+5%3'!VP!8#56!M9K=!<>I'W!

R#5!dTcd-N!!;-H,!5'4?'3+5%3'!VP!8#56!M9K=!<>I'W!

R#5!Pbc-N!!3'6'3['I!Vd-!8#56W!

!$/$-#'I).6#'<).&/$$

!7*,2%'%F%*$#'6/$/'<).&/$!

1'6'3['I!65+5%6!F>3I6!V,T!4>I'6W!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!-!V-N!65+5%6!F>3I6!U>34+5!Q+)W!

R#5!aacaTN!---,,!c-,,,,!Vd!8#56W!V3'6'3['IW!

R#5!a0c-N!5>!8'!I'A('I!

f6'3.I'A('I!65+5%6!F>3I!V,O!4>I'6W!

R#5!abN!-!!V-N!(>5!<>#(<#I'(<'!'['(5!I+5+!U>34+5W!

R#5!a`N!-!V-N!65+5%6!F>3I6!U>34+5!Q+)W!

R#5!aacaTN!,----!c,,,,,!VP!8#56W!V%6'3!I'A('IW!

R#5!a0c-N!%6'3!I'A('I!

!$/$-#'I).6#'<).&/$$

9$65'4!6>lF+3'!U3+4'F>3G!4>I'76!

•   J)#$'()&1-$%.'#)KI/.%'<-*(0)*#'
.   6$65'4!<>(A)%3+@>(/!<+7#83+@>(!+(I!

4>(#5>3#()/!!

.   I+5+!+<2%#6#@>(!!

.   I+5+!+(+7$6#6!

J)#$'()&1-$%.'#)KI/.%'<-*(0)*#!

•   9#()7'!'['(56!I+5+!+(+7$6#6!
 a. Addressing analysis
-DUC/MB/DB/CH address mapping
-Individual crystal ID address mapping (Flood map and Crystal ID lookup table)

b. Energy data analysis

- ADC channel data analysis

- Energy histogram analysis (energy resolution, energy window and etc.)

c. Time data analysis

- TDC channel data analysis

- Time histogram analysis (time resolution, time delay correction and etc.)

d. Test mode data analysis
- data transmission integrity analysis

J)#$'()&1-$%.'#)KI/.%'<-*(0)*#!

•   =>#(<#I'(<'!'['(56!I+5+!+(+7$6#6!
a. Coincidence pair addressing analysis

b. Coincidence event analysis

 - Sinogram

 - Random correction and etc.

J)#$'()&1-$%.'#)KI/.%'<-*(0)*#!

•   95+5%6!F>3I6!I+5+!+(+7$6#6!!

a. Time word analysis
b. Event rate analysis

c. Temperature and voltage monitoring
d. User-defined status processing

J)#$'()&1-$%.'#)KI/.%'&)6%2!

CUC/MB/DUC/CDUC software

121345362131621'7*&8(*%'9:;<=>'
?*(&%8/*@'&/)%A!

65'9:;<=>'?*(&%8/*@'&/)%A!

OpenPET Software and Firmware
Management

Martin S. Judenhofer, PhD
Department of Biomedical Engineering, University of

California-Davis, Davis, CA

OpenPET Meeting, Berkeley, May 10-11, 2012

How to manage the software/firmware
and associated source codes

Categories of OpenPET users?

•   End user with limited programming skills

•   End user with programing skills (FPGA & software)

•   Developers

How to manage the software/firmware
and associated source codes

What would users like to see ?

•   Provide packages for users to download

•   Provide regular updates

•   Have ticketing system for bug reporting

•   Provide documentation for framework usage

•   Provide binaries for advanced users

Structure of Software and Firmware

System
component

Firmware
(FPGA)

uC source
(NIOS II)

API
(on host)

DB Yes No No

DUC Yes Yes No

MB Yes Yes No

CUC Yes Yes No

Host PC No No Yes

What should/would users like
to be able to modify

System component Simple
End user

Software & FPGA
End user

Developer

DB FPGA No Yes Yes

DUC FPGA No No1 Yes

DUC software No Yes Yes

MB FPGA No No1 Yes

MB Software No No1 Yes

CUC FGPA No No1 Yes

CUC software No No1 Yes

Host PC API use No Yes Yes

Host PC API
modification

No No1 Yes

1Making changes here requires great attention and may require recompilation and correction of other backbone FPGA code

Deployment of packages (simple user)

In the beginning

•   Simply download binaries

•   User has to take care that hex files get downloaded properly

•   Prepare “Boot-SD card”

Future

•   Download one software package

•   Main software should be able to configure and flash complete

system by downloading the correct binaries (included in software

deployment)

•   Only have to flash the MB FPGA once

•   Automatically prepare “Boot-SD card”

Deployment of packages (advance user)

Download binaries source code as needed

•   A software user is not interested in modifying the FPGA code

•   A non developer user may not need/want to modify the backbone/

framework

•   Developer should receive all sources

How the keep a current version of all the
source code?

•   Since several groups will participate in
generating the source codes which will be
used in the OpenPET framework, we will
need some means of version control

What is version control

•   Version control allows tracking of changes done to source
codes

•   Version control allows seamless switching between
versions of source codes (“time machine”)

•   Source codes can be branched (parallel version) and later
be merged back to the main trunk

•   Usually, changes made between versions can be
conveniently visualized

•   Used for large community projects (e.g. Linux kernel) and
in software companies

•   Allows web hosting of source code. ! easy accessible

What can be used for version control?

•   There is several tools available (many free)
–  Subversion

–  GIT
–  Bittracker
–  …

•   Web hosting is offered as well

What should we use?

GIT
-   Free software
-   Easy to use on Windows (great GUI, TortoiseGIT)

-   Easy to install on web servers (no external hosting
required)

-   Uses SSL encoding for transfers

-   Can be made available to download from web pages
-   Can monitor user access by means of SSL keys

Why GIT?
GIT provides some nice features

–  Uses local repositories
•   Each user has to whole history on his desktop
•   User can work independently

•   Sub groups can work independently

Main
repository

User 1

Local rep

Work
directory

User 2

Local rep

Work
directory

Why GIT?
GIT provides some nice features

–   Is very fast (quick transfers)

–  Provides features to branch and merge
–  Great data security, each user has a backup!
–  Each commit will have to have some comment

which will be very helpful for documentation

Documentation of Source code

•   Documentation of source code is essential
to make long term use of it and to have
others use it

•   Documentation essentially requires
discipline of the programmer

•   Using the versioning software can provide
some documentation on specific bug fixes
and progress

Documentation of source code

•   Use Doxygen

It can help you in three ways:
•   It can generate an on-line documentation browser (in HTML) and/or an off-line

reference manual (in) from of a set of documented source files. There is also
support for generating output in RTF (MS-Word), PostScript, hyperlinked
PDF, compressed HTML, and Unix man pages. The documentation is
extracted directly from the sources, which makes it much easier to keep the
documentation consistent with the source code.

•   You can configure doxygen to extract the code structure from undocumented
source files. This is very useful to quickly find your way in large source
distributions. You can also visualize the relations between the various
elements by means of include dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated automatically.

•   You can also use doxygen for creating normal documentation

From : www.doxygen.org

Documentation of source code

•   To be most efficient, Doxygen uses tags
which are inserted in the source code
comments
/** <A short one line description>
<Longer description>
<May span multiple lines or paragraphs as needed>

@param Description of method's or function's input parameter
@param ...
@return Description of the return value
*/

