OpenPET Early Adopters Meeting
Dates: May 10-11, 2012

Location: Lawrence Berkeley National Laboratory

The presentations included here are from a small,
informal workshop with the LBNL OpenPET developers
and a few Early Adopters/Users. The content is
preliminary in nature and may conflict with
documentation and presentations posted on this
website in the future.

openPET Early Adopters Meeting Agenda

Dates: May 10-11, 2012

Location: Lawrence Berkeley Laboratory, Berkeley, California
Room number: Building 55-121, Room 117 (Conference Room)

Thursday, May 10, 2012

Time Item Presenter
9:30-10:00 | Setup
10:00-10:50 | Introduction and Overview of Groups
Goal: Introduce groups to each other and understand
how each group plans to make use of the OpenPET
system
10:00-10:20 | Introduction of LBL Group and development history | Bill Moses
of OpenPET
10:20-10:35 | Overview of Manitoba Group and Plans Andrew Goertzen
10:35-10:50 | Overview of Davis Group and Plans Simon Cherry
10:50-11:00 | Break
11:00-12:30 | Overview of System Hardware
Goal: Provide an understanding of the technical
specifications and capabilities of the system and how
the pieces communicate with each other.
11:00-11:30 | Detector board design Seng Choong
11:30-12:00 | Support crate Bill Moses
12:00-12:30 | Board and system level communication overview Qiyu Peng
12:30-13:30 | Lunch
13:30-15:30 | Software/Firmware Framework and Demonstration
Goal: Provide an understanding of how to interface
with the OpenPET, including writing of firmware,
uploading of firmware, and acquisition of data from
system.
13:30-14:30 | Overview and discussion of Software/Firmware Qiyu Peng
Framework
14:30-15:30 | Demonstration of Hardware and Existing Qiyu Peng
Programming Tools
15:30-15:45 | Break
15:45-17:15 | Functionality Requirements
Goal: Define what functions are required to enable
the acquisition of data using an OpenPET system.
15:45-16:15 | Overview of desired functionality requirements from | Andrew Goertzen

an end-user’s perspective

Thursday, May 10, 2012

16:15-17:15 | Discussion to define and prioritize requirements
17:15-17:30 | Break
17:30-18:30 | Software/Firmware Management
Goal: Provide overview of web-based tools for
communication between users.
17:30-18:00 | Website Description Jenny Huber
18:00-18:30 | Overview of wiki and software/firmware Martin Judenhofer
management
19:00-21:00 | Group Dinner
Location and timing TBD.
Friday, May 11, 2012
Time Item Presenter
9:00-10:15 | Collaboration Structure and Communication
Goal: Define how user groups will interact with each
other and LBL.
Discussion topics:
Frequency and method of communication.
Progress monitoring and documenting.
Authorship on publications.
10:15-10:30 | Break
10:30-12:30 | Data, Communications and Command Specifications
Goal: Discuss and define some of the more in-depth
technical aspects of the operation of the system.
10:30-11:30 | Data format standards Qiyu Peng
11:30-12:30 | Communications and Command Specifications Qiyu Peng
12:30-13:30 | Lunch
13:30-17:00 | Discussions and Miscellaneous
Goal: Address all items left over.
13:30-15:00 | Division of tasks discussion
15:00-15:15 | Break
15:15-17:00 | TBD

\\\\\\\\m/////////

///////
\\\\\\\\

\\\\\\\\\\\ g
////////// i

//////// 1\

penPtl

A Flexible Electronics System
for Radiotracer Imaging

Introduction & Overview
May 10, 2012
William W. Moses

-~

rerreer

N

openPEl Vision

General-Purpose Electronics & Software
for Nuclear Medical Imaging Cameras

Open Source

//
\\\\\\\\\

\\\\\\ \\“\“WJ'V ///

/
//////‘//m

//// e

‘Hardware, Firmware, and Software
Schematics, Gerbers, BOM
Active User Community

-~

/—\ /\
rerreer

Share Software and Expertise

‘Module, Calibration, DAQ, Display,
http://OpenPET.LBL.gov

SERKELEY LA

All Detector Outputs Look the Same

Extract Timing Signal Extract “Energy” from
from Leading Edge Area Under the Curve

/

Voltage

100mvV -2V

Time

Tremendous Variation in How Outputs Are Combined
—=Combine Outputs in Firmware

Electronics System Requirements

High-Performance
of Channels, Rate, Energy, Timing, ...
Very Flexible
*Type of Detector, Camera Configuration,
Event Word Definition
User-Modifiable
Schematics, Source Code, Knowledge Base
User-Friendly
‘Instructions, Documentation, Can Buy Boards

Like Open Source Software

OpenPET Architecture (Small System)

32 Analog & 16 Digital

Signals In DBs In
Detector Support
Board ™ Board
> MP S

Detectors |

Detector Unit

Data Host PC

Control

> } OpenPET Bus

Supports 64 Block Detectors

Support Crate

Support Board

Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Host PC Interface
User IO
Debugging

o 1. 2 3 4 5 6 7 8 9 10 N

Power and Fans

“VME Crate,” Support Board, and 3 Interface Boards

Detector Unit (in Small System)

Support Board

buibbnga(

ol Jasn

99eI9)u| Od ISOH

Adw3

pleog 10}99}aQ

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}aQ

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}aQ

9 10 11

8

Power and Fans

Support Crate and Up To 8 Detector Boards

Small System

Host PC

Detector
Unit

OpenPET Architecture (Standard System)

32 Analog & 16 Digital
Signals In 8 Boards In 8 DUs In
Dstoeacrtdor # S;gg'?drt — Coincidence
> MP ¢ > MP
Detectors | . Coincidence l
Up to 8 Detector Units Unit *
— Host PC
Data } OpenPET Bus
Control «——

Supports 512 Block Detectors
Adds Coincidence Unit

OpenPET Architecture (Large System)

32 Analog & 16 Digital

Signals In 8 Boards In 8DUsIn 8 MUX In

Dsz)eaitc?r — Sélopg'?drt —)éMuItipIexerihi-é-)Coincidence
> UP L uP L > uP
Detectors - Rl |
Up to 64 Detector Units Coin. Unit
— Host PC
Data } OpenPET Bus
Control «———

Supports 4096 Block Detectors
Adds Multiplexers

Detector Unit (in Standard & Large Systems)

Support Board

buibbnga(

Ol 199N

99eI9)u| Od ISOH

JoAI99suel] paadg-ybiH

pleog 10}99}aQ

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}aQ

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}a(Q

pleog 10}99}aQ

9 10 11

8

Power and Fans

Small System Detector Unit and HS Transceiver Board

Transceiver
Board
in Slot 8

Support Board

iIncidence Un

Co

@
(-
®
a
O
buibbnga(
Ol 19sN
9JdejJu9ju| Od ISoH

JoAI99suel] paadg-ybiH

J9A199suel | paadg-ybiH

J9A199suel | paadg-ybiH

J9AI99suel | paadg-ybiH

JaA199suel] paadg-ybiH

JaA199suel] paadg-ybiH

JaA199suel] paadg-ybiH

JoAI99suel] paadg-ybiH

JaAI99suel] paadg-ybiH

9 10 11

8

Power and Fans

Support Crate and Up To 8 HS Transceiver Boards

One Detector Unit

per Coincid%

Standard System

Detector
Unit

Host PC

1

v

Coincidence

\

Unit

Detector
Unit

... (up to eight)

Detector
Unit

Up to 8 Detector Units

per Coincidence Slot

Large System

Host PC

1

v

Coincidence

Unit

Detector
Unit

Detector
Unit

Detector
Unit

... (up to 64
Detector Units)

\

Detector
Unit

Proposed System to use openPET

Martin S. Judenhofer, PhD

Department of Biomedical Engineering, University of
California-Davis, Davis, CA

OpenPET Meeting, Berkeley, May 11-12, 2012

NN (@

UCDAVIS cIm g

UNIVERSITY OF CALIFORNIA

Proposed System to use openPET:

DOI based PET scanner

* Use small crystals blocks

e Use dual ended readout to
obtain depth of interaction (DOI)
using PSAPDS

* 4-ring system, each ring 24
blocks (96 blocks total)

UC DAVIS © 2012, M.S. Judenhofer, UC Davis,

UNIVERSITY OF CALIFORNIA Department of Biomedical Engineering

Block Detector Principle

Each PSAPD has 4 corner signals

Sum of all 8 signal is energy
Ratio of Sum1 to Sum2 is DOI
X/Y is calculated from ABCD and sum

- 8 channels need to be sampled

“UCDAVIS s o CM g £-

UNIVERSITY OF CALIFORNIA Department of Biomedical Engineering

OpenPET Detector-Board Usage

* Per Block 8 digitizer
channels are required .

e Sum of all 8 channels can be
used as trigger

e All 8 signals are used to
generate X/Y/E/DOI

e Signal duration ~ 200-300 ns
* Rise time 40-60 ns

UC DAVIS © 2012, M.S. Judenhofer, UC Davis,

UNIVERSITY OF CALIFORNIA Department of Biomedical Engineering

_l
o
O
Q.
-]
o
o
)
>
P
()
9Y)
o
Q
=
o

Requirements

Data Processing Requirements

* Need to sample about 10-15 consecutive samples per event

 No CFD - Triggering on leading edge - large time walk - additional
processing required to improve timing

« May require multiple X/Y look up tables for crystal positions depending on
DOI depth (3-5)

Hardware

4 Blocks per detector board

24 Detector boards

3 Support boards to read all 24 detector boards (8 per board)
1 coincidence board

UC DAVIS © 2012, M.S. Judenhofer, UC Davis, C m g é

UNIVERSITY OF CALIFORNIA Department of Biomedical Engineering

\\\\\\\\m/////////

\

\\\\\\\\u//////////
my m\\\\\\

\\\\
///

//////////)

penPtl

A Flexible Electronics System
for Radiotracer Imaging

Support Crate
May 10, 2012
William W. Moses

s

rerrereer

Support Crate

Support Board

Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Host PC Interface
User IO
Debugging

o 1. 2 3 4 5 6 7 8 9 10 N

Power and Fans

“VME Crate,” Support Board, and 3 Interface Boards

Support Crate Form Factor

Same as 12-Slot VME 6-U Crate

‘Connectors in Different Locations
*Avoid accidently plugging in VME boards!

8 Input Slots (Slots 0-7)

‘Detector Boards if Detector Unit
*High-Speed Transceivers if Coincidence Unit

°4 Slots for “Plug-In” Boards
‘High-Speed Transceiver (Slot 8)
‘Interface to Host PC (Slot 9)
‘User 10 (Slot 10)

‘Debugging (Slot 11)

reerereenr [[[

Plug-In Boards

Host PC Interface (Slot 9)

Front panel Ethernet connector, USB2 connector, SD card connector, 3 reset
switches, 20 LEDs, detector bias voltage input (BNC connector, —100 V to
+100 V).

User 1/O (Slot 10)
Front panel connectors for two RS-232 cables, an External Clock input
(SMA), and 48 external digital 10 lines. A jumper sets the logic levels for all
48 lines to 3.3 V or 5.0 V. Each Support Board FPGA (the Master and both
Slaves) is connected to 16 lines. Groups of 4 adjacent lines are set via a DIP
switch to be inputs or outputs.

Debugging (Slot 11)

Front panel JTAG connector (that can be used to program the FPGAs
directly), four Aligent 16902B connectors for logic analyzers (two connect to
the Main FPGA, and one to each of the two Slave FPGAs), and 30 user-
defined LEDs (10 connected to each of the 3 FPGAS).

-~

A
n

Brings Support Board Connectors to Front Panel

High-Speed Transceiver Board

Front Panel

Connection to

OpenPET Bus <)
OpenPET Bus <)
OpenPET Bus <)
OpenPET Bus <)
OpenPET Bus <)

OpenPET Bus <€) |
OpenPET Bus <= .

OpenPET Bus <)

FPGA

NIOS
Core

il

Support Board

——) OpenPET Bus

« Each OpenPET Bus can be programmed to be either an
input or an output

 The FPGA can act as a multiplexer or fan-out

* This board can plug into Slot 0—7 (as an input to the SB)
or into Slot 8 (as an output from the Support Board)

N
rerreer

m‘
SBERKELEY LAB

* NIOS Core supervises communication and control

Conceptual Design

Support Board Event & Communication Flow

Detector Board () === Siave Openﬁ’ET Bus
Detector Board 1 ====| c5 ~ \)

,; Coincidence
Detector Board 2 === T Board

8 each Master FPGA
Detector Board 3 === 16 ench r)
I~ ~~ 16 eac
Detector Board 4 ===t Datal Only
NIOS
Detector Board 5= o Core
p— Control Onl

Detector Board 6 === FPGA / . > Hgst

/ > < >
Detector Board 7 === 8 each usB& PC

Ethernet

 Input and output of each functional unit is OpenPET Bus
(sometimes with additional 10 lines)
- VHDL handles all real-time multiplexing & data transfer
ﬁ} A “NIOS Core” is a CPU inside the FPGA that runs C,

r

’\\'" handles communication and control

Detector Board to Support Board Bus IO

OpenPET Bus

Singles Event Word

Singles Event Word

VHDL

Singles Event Word

Code

Singles Event Word

Spare Digital Lines (€

CTRL_CS

CTRL_CLK
Control CTRL DI

CTRL_DO

YV V V¥V ¥V VY

FPGA e

Programming CONF %‘gﬁg

Y V VY Y VY

NIOS Core

Clock In

Time Slice Boundary In

Clock Clock Out
Time Slice Boundary Out

Detector Board

Clock Conditioning

Support Board

Connector Between Detector Board and
Support Board (OpenPET Bus)

. Color Group Description
1 D0+ GND D1+ LVDS Data to DB FPGA &
2 DO- 3.3V D1- Coincidence Board
3 D2+ GND D3+ H Clock & Slice IN/OUT
4 D2- +5V D3- Undefined pins between DB FPGA
5 D4+ GND D5+ & DSB FPGA
6 D4- -5V D5- Slow control SPI interface signals
7 D6+ GND D7+ DB FPGA serial programming pins
8 D6- 3.3V D7- I No connection
9 D8+ GND D9+ Power & GND
10 D8- +5V D9- Detector Bias Voltage (100 V max.)
1 D10+ GND D11+
12 D10- 5V D11-
13 D12+ GND D13+ Power & FPGA
14 D12- 3.3V D13- .
15 | Di4s GND D15+ Programming
16 D14- +5V D15- . .
17 L GND e SND Sometimes Omitted
19 +5V n n
2 | o\ £V GND Data coming into a
22 GND
2 ey EC board clocked by
24 | SPAREO+ SPARE1+ SPARE2+ - . .
25 | SPAREO- SPARE1- SPARE2- C I OCk_l n / S I |Ce_| n y
26 | SPARE3+ SPARE4+ SPARE5+ .
27 | SPARES- SPARE4- SPARES- Data comli ng Qut Qf a
2 28 | SPAREG6+ SPARE7+ CTRL_CS
cereeny) 1R i e G board clocked by
31 DCLK DETECTOR BIAS DATAQ l :
o | s oerecroRens o] clock_out / slice_out
| |

of SB Sch

Page1

Schematic Organization

Sheet 01: TITLE Block Diagram
DC-DC 1.2v,1.8v,2.5V Sheet 02: FPGA Package Top view
Power Supply Sheet 0 LAYOUT Flow Diagram
Converter Supervisor &|CMOS 3.3V B Bank 5 CMOS 3.3V Temp Sensor Sheet 0 Power in Regulator
) ————————ABank 1 (I2C- ADT7410) Sheet 0 CLock d sli Ci it
+3.3V, +5V, -5V Input/|\ Monitor ADC ee ock an ice Circui
‘ r Sheet 0 FPGA Power
cMOS 3.3V Sheet 07: FPGA & EPCS Configuration
User I/0 Bank 5 Kzt aaa + 165 1707 4 MB of SRAM Sheet 08: MAIN FPGA Banks 1,2,3,4
CMOS 1.8V Bank 2 Sheet 09: MAIN FPGA Banks 5,6,7,8
(b dix ¥ 160 1/0) Sheet Slots 1 to 4 IO FPGA Connection
MAIN FPGA EP3C40F780 Sheet Slots 5 to 8 I0 FPGA Connection
Bank 5 CMOS 3.3V 64 MB of FLASH Sheet QUSB Interface
CMOS 1.8V Bank 2 (25b Aad + 16b 1/0) Sheet Slot 9 to 12 Interface & SD Card
(xoe) Sheet SRAM & FLASH
Sheet DDR2 SDRAM SO-DIMM
Sheet SPARE
al SSTL 1.8V 1 GB of DDR2-SO-DIMM SDRAM T
SD Card CMOS 3.3V N Bank 3,4,7.8 (160 Add + edb 1/0) (200 pin laptop form factor Sheet FEGA Power Decoupling
s 1/0) Bank 1
Bank 8 CMOS 1.8V b Tb Switch
QuickUSB CMOS 3.3V Bank 1
b Add + 165 1/0) A cMOS 1.8V Logic Analyzer
Bank 4 e+ oy connector 1
Zo(Frez s . GbEthernet CMOS 2.5V Bank 6 oS 1.8V Togic Analyzer
oincidence Boar: Bank 7 eb F oIy connector 2
&4 pin 10C LvDS (SRUNNER) Bank 1
Coincidence Board (CB CMOS 2.5V 4 =
[————————— 4 Bank 6 CMOS EPCS64 Programming
Local Clock Clock & Sync Buffer .‘2:;;53":;;::;3,‘ Bank 1,6 b—‘ EPCS64 (64 Mb) Connector
Bank 2 Bank 2, 4
>
©
(165 Data + 8 IN + 8b I§OUT + 8b Spare) -
]
: g
. \ FPGA JTAG Programming
) f v "NIOS II Debug Connector
§] (16b Data + 8b IN + 8b INOUT + 8b Spare)]
!,]
ul ll l
User I/0 cMOS 1.8V o Bank 7,8 % Bank 7,8 Bank 1,6 , CMOS 1.8V User I/0
Interface @ air + 1 170 /] Bank 8 - % % Bank 8K o i o Interface
~ o o
Logic Analyzer 5 8 "
ogic Ana -
CMOS 1.8V a CMOS 1.8V Logic Analyzer
SLOT 1->4 FPGA EP3C40F780 SLOT 5->8 FEGA EP3CA0F780
LED Bar |, CMOS 1.8V cMOS 3.3V
(10p) -
Bank 8 Bank 3,4 165 1/0) A Bank 3,4 Bank 8§ CMOEQMI.BV
2 MB of SRAM CMOS 3.3V Bank 3,4
Bank 1,2,5,6 Bank 3,4 Bank 1,2,5,6 Bank 3,4 N 200 Add +16b 1/0)
Detector Bias
Connector
(-100V to 100V) R LREE o g g EORSE o gt
> > >
@ 7 “ “ B “
Q :) o . ®
~ ~
@ 1] (2] 12
o) g g8] g
8 g 3 g
Aa N a
\V /
Sovsns LBNL s
o o0 coeceet rn‘
To/From 8 Detector Boards (DB) Berly.Callomie 64720]
CRERSIE ONNEWSUPPORT
R . R . . . R . Engineer: Chink Vu ™e: Title Block Diagram
The slot numbering convention for this schematic is 1-12. The "correct" convention for the system is 0-11. Gosgror utysoasan_[Priec: OPENPET- SB
i B O T o o Py

T

T

Will Use “Cartoon” of Schematic (Old Eyes...)

Self-Explanatory Connections

Power > < > Temp Sensor
LED Bar |« 1/; Master (,
N e . +{ Dip Switch
———————> 8
OpenPET(ﬁ E

t 1

<> >

«<— Slave Slave —
LED Bar |/ FPGA "€ FPGA /[LED Bar

10 «——> «—> 10
 LED Bars — User definable, no present allocation
* DIP Switch — User definable, no present function

* OpenPET Data and Control sent through FPGA, clock
/ﬁ » sent through separate conditioning / distribution circuits

Host PC Interface Board Connections

SD Card M‘ Master

QuickUSB |2 \ FPGA —

Ethernet < _ —

t 1

< Slave Slave [—
1 FPGA [FPGA ——

"t M
« SD Card Connector on both SB and Interface Board, but
only one can be plugged in at any given time
* QuickUSB Connector on both SB and Interface Board,
rﬁ} » but only one can be plugged in at any given time

’x- Ethernet Connector only on Interface Board

User 10 Board Connections

UserlO |/ > —
Master

5 FPGA DR

t 1

User 10 |« /—| UserlO
20 «— > Slave Slave «—— 20

1 FPGA [FPGA ——

Tt Mt
- Each FPGA has 16 data lines plus 4 direction lines

* These lines go to the User 10 Board, and are buffered on
that board

s

/N » * The two RS-232 ports and the External Clock are not
N shown on the block diagram

Debugging Board Connections

>
—>
>

Master

E 5 FPGA DR

Logic Analyzer

—
(_ﬂ 1 1 \17‘ Logic Analyzer
7

<> >

Logic Analyzer <~ Slave I Slave /=

7 < FPGA FPGA|—
- Each Logic Analyzer connector has 16 data lines plus 1

clock line
* These lines go to the Debugging Board, and are not

Logic Analyzer

/“N n buffered
et e JTAG connection described separatel
e

Memory for NIOS Core (Microprocessor)

— . — 64 MB FLASH
Master
SD Card |« > FPGA ———{ 1GBDDR-2

t 1

< Slave Slave [—
1 FPGA [FPGA

M Mt
- DDR-2 used like “PC RAM memory” by NIOS Core

- SD Card is primary “PC hard disk” for NIOS Core
/AN » *FLASH is secondary “PC hard disk”

/X"" (in case of problems with SD Card)

Memory for “VHDL” Part of FPGA

> 4 MB SRAM

Master

5 FPGA DR

t 1

2 MB SRAM « > 2 MB SRAM

< Slave Slave [—
1 FPGA [FPGA

Mt M

- SRAM is fast, with fixed latency (look-up time)
ﬁ} » * Used for lookup tables, etc. for “VHDL” (real-time)
_ "" FPGA code

FPGA Programming Connections

Master Program
- FPGA < | from FPGA

EPCS64 Connector

f—4~

< Slave Slave [—
«~—— FPGA [FPGA ——

Mt M

Program
from PC

* All 3 FPGAs programmed by EPCS64 Memory
= e EPCS64 programmed by PC via connector on SB, or
"/f—'} "" - EPCS64 programmed directly by FPGA

FPGA JTAG Connections

Master

5 FPGA DR

1 A JTAG
1 Connector

< Slave Slave [—
1 FPGA [FPGA ——

Mt M

- Can load equations into one FPGA via JTAG connector
(on Support Board or Debugging Board)

:;} A - Jumpers select which FPGA programmed

« Can also run NIOS debugger through JTAG

s

Page 7 of SB Schematic

Re2
: : IO (1-4) & (5-8) Vcio of banks 1&6 = 2.5V
Main FPGA Vcio of banks 1 = 3.3V, bank 6 = 2.5V 10K
U13F EP3C40F780 25v U3F EP3C40F780 25v U4F EP3C40F780
C26¢ .C260
2.2uF 0.1uF MAIN FPGA ™S P8 Main TMS R410 Io_l_A_FPGA P8 1014 TMS 321 IO_S_E_FPGA ™S
B2y £26 1 iNT_bone ToO [BE—pan 100 £26 1 INIT_DONE R R £28 1 iNIT_pone 00
R184, DNI — [NSTATUS Ol 65 Main TCK P24 | NSTATUS Ps 10 T4 TCK P24 | NSTATUS 0!
CONF_DONE TCK 10K 47| CONF_DONE TeK [F—— A 10k | P4 CONF_DONE TCK
RIBE. . O u24 NCONFIG 28 R&| NCONFIG P28 NCONFIG
% % RIBE. . 249 NCE NCEO [-525 R NCE NCEO [533 ! NCEO
VCCa DATA g Rise, %99 DATAD MSEL3 (4) [igz 3| DATAO MSELS (4) [55 DATAO MSEL3 (4)
VCCb DCLK = DCLK MSEL2 [-p3 £ DCLK MSEL? [p55 DCLK MSEL2
nCS [z FLASH_NCE, NCSO MSELT [y — o FLASH_NCE, Neso MSEL1 (o5 FLASH_NCE, NCSO MSELT
ASDI 3 DATA1, ASDO MSELD —F2{ DATA1, ASDO MSELO DATA1, ASDO MSELD
NeE [1 25V 433V
N2 Raot RS2 A~]
NG [R51 oL
u oK
H
v 5 ¢ 8
3l ¢
I
al 5 g g 3 RSS c1at
N g 3 3l 8 i
=
2.2uF
| 25V 433V NI NI NI NI
" 25v
173 183
BAT54S| 1 2
05 — —
u 5 6 T
= T z 55 N ° AS Standard POR 2.5V for Master PS standard for Slave device PS standard
) T
SAMTEG TSNV LC Connect [M3:M0] To either GND or Vcio of bank 6 of
the device (Use AS Standard POR 2.5V for Master and
264 c2% | cose Byte-Blaster cable C250 (-
22uF 0.1uF PS for Slave device)

10pF

Hl

10pF (to configure the EPCS64 Flash Only)

FPGA Programming Modes

(to configure & NIOS II Debugger on Main FEGA or

individual FPGA one at a time)

R141 Ri61
"IN JTAG MODE" 0 ONI
10K 10K
435
oK 1 _':'_| 2
1058 TDO] DNIL .\ RI71 00 3 4
THS 5 6
7]
01] 0
HEADER 5X2 c2: 259
R168 R179 SAMTEC TSM-DV-LC 220F 0.10F
Byte-Blaster cable
10K 10K

on Debug Plug-in Board)

(This connector also available

Normal FPGA Programming Mode:

Equations are stored in an EPCS flash memory device (U24) and are loaded into au three
e

FPGAs on power up. The Main FI

programmed

PGA is programmed in AS Mode, while the I/O FPGAs
in PS Mode. Note that J61 and the resistor options connected to HSELO,

1,2,

and 3 of each FPGA are for initial circuit validation only, and should not be modified.

Loading Equations into the EPCS Memory (U24):
FPGA equations (which are stored in the EPCS and loaded into the FPGAs on power up) can be loaded

into the EPCS two different ways:

1) Through the “SRUNNER” lines, which are driven by the Main FPGA, which in turn is driven by the
to

Host PC. As

no additional hardware is needed

o this, this is the default method for loading the

EPCS memory. However, appropriate equations naed o be in the Main FEGA in order te use this method

to load the ERCS

2) By plugging a Byte Blaster or USB Blaster cable into J36,

tools to load the EBCS.

then using a BC running the Altera

Loading Equations into the FPGAs (Debugging Mode) :

For debugging,

it is possible to connect to one of the FPGAs via JTAG. This allows you to use the

Alter tools to load equations directly into the FEGA or to use the Altera debugger, which is
especially useful for debugging code that is running under NIOS. The BC controlling the JTAG
interface can be plugged in either to J35 on the Support Board or to the Programming Connector (J7)

on the Slot 12 Debugging Board. Jumpers must be plugged into appropriate locations in order to select

the desired FPGA:
Main FEGA (U13): Plug
10_1 4 FPGA (U3)
10_5_8 FPGA (U4):

in jumpers on J58, J62, J65,
Plug in jumpers on J59, J63, J66, and J69 only.
Plug in jumpers on J60, J64, J67, and J70 only.

and J68 only.

for Slave device

ASDI ASDI 8
DATAOUT DATAOUT 8
NCONFIG NnCONFIG 8

Rovisions:

Engineer: Chinh Vu

Designer: Judy Stirkkinen

Proie QPENPET- SB

LBNL

Electronics Engineering Division
One Cyclotron Road
Berkeley, Callfonia 94720

CAUSERSWBNL_OPENPETDOCUMENTATION FOR DF

™ FPGA Configuration

N

A
frerees ‘m

RIBUTIONWEWISUPPOR]

DWG NO.: <Doe>

Jsheet 7 ot 17 [RoVg

5"6’] Modify Date: Wednesday, Apri 25, 2012
T

Non-Trivial, But Detailed Instructions...

Clock Distribution

Small System Standard or Large System
Host PC Host PC
I “On-Board Oscillator” f
* “Upstream Board” Coincidence
Detector Unit
Detector Detector Detector
Unit Unit Unit

* Three Possible Sources On Each Support Board:
1) On-Board Oscillator, 2) Upstream Board, 3) Debug Connector
- Jumpers select Source on Each SB
* “On-Board Oscillator” Should Be Used on the Top Level SB,
“Upstream Board” for the Rest (Exactly 1 Oscillator per System)

The OpenPET Firmware and
Software Framework

Requirements

* Reliability

e Stability

* Flexibility
 Scalability

* Compatibility
e Simplicity

System Configuration

* The OpenPET system is essentially a computer
network with a tree topology.

Standard system configuration

Host computer
A

CcuC
2 Coincidence

»!
LA L L L XX X 1 J

s i‘

.........ﬁ
0
. .
]
DUCO DUC1 DUC2 E DUC3 |s DUC4 DUCS DUC6 DucCt
: v u;=
. .
. .
. .

DBO| |[DB1| |DB2| DB3 |DB4| DB5| DB6| DB7

CHO| |CH], e @ @ |CH30| CH31

Detector Unit

Large system configuration

Host computer
A

Coincidence Unit

cucC

MBO MB1 MB2 MB3 MB4 MB5 MB6 MB7

DUCO DUC1 DUC2 DUC3 DUC4 DUC5 DUC6 DUCT

DBO| [DB1| (DB2| |DB3| | DB4| |[DB5| |[DB6| |DB7

CHO| |CH1l| @ @ ®@ |CH30| |CH31

Detector Unit

Small system configurations

Host computer
A

Coincidence and
Detector Unit

CDhUC

DBO| |DB1| [DB2| DB3| |DB4| DB5| |[DB6| DB7

CHO| CHl e e @ |CH30| |CH3I

..q
oo OOGOOOOOOGOINTSGSNTONTSNTOSINTOSNTOTOSTOTDDODDDDODOOOSS

Mixed system configurations

Host computer

Host computer

Coincidence and
Detector Unit

cccnd

Coincidence Unit

o o] o o o] o
.

f

pecea

DUCO LN ‘ DUC3

LN N J ‘DUCV ‘.

14
>
:

o ofusspva][uzvvafuemual

v

ngé

Detector Unit

[

swééé

Detector Unit

oo o

Not recommended

System hardware structure

le» Memory
CPU

> Hard disk
Host Computer

jr USBJ/Ethernet/Fiber Optic
<z

Coincidence Unit

Nioslicpy ["LRedisters]

I —
(o0 [Memo [S0] Mise.] e
Data/Status/ Data/Status/
Command interfaces Command interfaces

Registers
: °
.

Nios Il CPU

XX) Nios Il CPU

Transceivers ®oeoo

-

MB#
Data/Status/ Data/Status/
Command interfaces Command interfaces

NioslicPU [<7LRegisters]

Nioslicpu || Redisters |

L S Y) L S LS. oeoo
bucH bucH

Data/Status/ Data/Status/
Command interfaces Command interfaces
[} ; .
; ;
oeoe0 ;000 Logic Circuit 00 0. 0 00:000 Logic Circuit TYIR R X
o]t ATt ey 5] o 4]t g

i Detector Unit

i Detector Unit

Digital 10

In Main FPGA:

16 bits digital 10 (4 bits direction control)

10 Bits LED bar

Two logic analyzer connectors (16+1 bits each)
In IO FPGA 1:

16 bits digital 10 (4 bits direction control)

10 Bits LED bar

One logic analyzer connector (16+1 bits each)
In IO FPGA 2:

16 bits digital 10 (4 bits direction control)

10 Bits LED bar

One logic analyzer connector (16+1 bits each)

Memory

In Main FPGA:

Flash memory

EPCS64 flash memory
64MB flash memory
RAM

4MB SRAM

1GB DDR2-SO-DIMM SDRAM
In IO FPGA 1:

RAM

2MB SRAM

In 10 FPGA 2:

RAM

2MB SRAM

SD card
Miscellaneous devices
Power monitor
Temperature sensors
Two RS232 interfaces

Firmware and software structure

Host computer software

Host Computer

Coincidence Unit

\ CUC software run in Nios Il CPU \

CUC firmware for 3 FPGAs
CucC

I I

MB software run in Nios Il CPU \

\ MB software run in Nios Il CPU

MB firmware for 1 FPGA MB firmware for 1 FPGA
MB# MB#

(°eccccccccccce eccccccccsccvcccce feeccccccccccccas eccccccccccscccce

DUC software run in Nios Il CPU DUC software run in Nios Il CPU

SB firmware for 3 FPGAs

DUCH#

DB firmware (1 FPGA)

SB firmware for 3 FPGAs

DUCH#

DB firmware (1 FPGA)

DB# DB#

Detector Unit

Detector Unit

eccccccccccccccccccccccccccccccaad

Brief Introduction to NIOS

SDRAM/flash
memory

JTAG blaster cable

NIOS Il

>

i>|

JTAG debug
module

System Interconnector Fabric

| A

OpenPET logics

PIO controller

PIO controller

Flash controller

DDR Il RAM
controller

LED, voltage,
temperature sensors

Flash memory

SDRAM controller

P10 controller

| T

DDR Il RAM

SDRAM

WAV

SD card

Brief Introduction to NIOS

NIOS PC
The real-time micro-processor with FPU CPU
Volatile memory RAM
Non-volatile memory Hard disk
Peripherals (analog and digital 10) Parallel, serial IO and etc
None or Nios II IDE running in the Host PC Key board and monitor

Programming Tools / Environment

DB DUC MB CUC | Host PC
FPGA Firmware X X X X
Embedded X X X

Microprocessor
Software

PC Software X

System addressing strategies

e System configuration profile (host computer)
- A tree data structure of the whole system

- A data structure contains details of all nodes in

the tree (node types, absolute addresses,
connection status and etc.)

- Integrity of all the hardware devices connected
to all the nodes

System addressing strategies

* Node type register and absolute address
register

Node type
register (CUC) Absolute address register (12 bits)

(@) [ofofo o [XXXX[X[X[X[X[X[X[X[X]

Node type
register (MB) Absolute address register (12 bits)

(b) (oo o]t FEREEREER] < [x]]
-
MB addr

Node type
register (DUC) Absolute address register (12 bits)

(¢) [olo[1 o [XIX[RIXIR]X =[x = [x]=[x]
%/—/%/—/
DUC addr MB addr

Node type
register (DB) Absolute address register (12 bits)

(d) [oTo[[T [X[XXx[=[=[x[z]=[x[x]x]

DB addr DUC addr MB addr

........................-...............q

Examples

Host computer

Coincidence and CDUC address (Node type & absolute address)
Detector Unit CDUC
of170]0 XIX[XXX[X[XX[X[X[X]|X]

S
DB2 address (Node type & absolute address)
LoJo[1[1[X[X[X[0[1]0[0]0[0]0]0[0]

DBO| [DB1| |DB2 E

CHO| CH]l| @ ®@ ®@ |CH30| CH3I

Host computer

CUC address (Node type & absolute address) J—
0]0]0[0 XIX[XX[X[XX[X[X[X|X[X] : Coincidence
o Unit

3 ""'""E DUC3 address (Node type & absolute address)
0
DUCO || buct 1] Duca jaf DUCS 4 = [o]o[1] 0 [XIX[XIX[XIX[0]0[0]0[1]1]
0
= :
’ 0
]
0
0
—] ‘ :

DBO| |DB1| |DB2

[DBQ address (Node type & absolute address)
- [oJo[11[X[X[x[0[1]o]o[0]oo[1]1]

CHO| CHI| @ @ ® |CH30| |CH3I

Detector Unit

Host computer
4

..1

CUC address (Node type & absolute address) cucC Comcidence Unit
0[0]0]0 XIX[XIXXXIXXX[X[X[X] AAAAAAAA

MB3 address (Node type & absolute address)
MBO MB1 MB?2 MB3 }
[ojofo]1 [XIXIX[XIX[X[X[X[X]0]1]1]

[DUCS address (Node type & absolute address)
[o]o]1]0 XX[X[X[X[X[0]1][1]0]1]1]

---J

DUCO DUC1 DucC2 DUC3

DB?2 address (Node type & absolute address)
[oJo[1[1[X[X[X[0[1][0[0]1[1][0[1[1]

DBO| DB1| |DB2 E

CHO| |CH]] @ @ ®@ |CH30| |CH3I

(L L L L X XX X XX XX XXX X XXX XXX)
»
»

Detector Unit '

System addressing strategies

* Offspring configuration profile

- Offspring Connection Status

- Offspring Enable/disable Status

- Offspring’s node types and absolute addresses

Absolute address assignment strategy

e Step 1: assign absolute addresses to all nodes
connected to the system (or establish
Offspring configuration profile)

e Step 2: Host PC read offspring configuration
profile from all nodes and establish system
configuration profile

v

Host computer sends commands to the CUC/CDUC to uploads
the CUC/CDUC offspning configuration profile 1=0

<

Y

(Bnd e " = v]

+No

Host computer sends commands to the MB# to uploads the
MB# offspring configuration profile. j=0

Host computer sends commands to the MB#, DUCH to uploads
the MB#,DUCH# offspring configuration profile. k=0

Yes

Host computer sends commands to MB#i, DUCH, DB#k to
uploads MB#, DUCH, DB#k offspring configuration profile.

System commands and responses

* Format of system commands and responses

CMD/Response ID Source Address Target Address Data Payload CRC
(16 bits) (16 Dbits) (16 Dbits) (1~256Dbytes) (8 bits)
CIR flag Std/User C/R flag

0000: Command/response for CUC node

0001: Command/response for MB node

0010: Command/response for DUC node

0011: Command/response for DB node

0100: Command/response for CDUC node (for small size system configuration)

v

v

15

14|13|12|11|10

716 (514321

~

C/R node type

C/IR ID (to be defined)

0101~1110: unused (users can define command/response by themselves).
1111: reserved for host computer

List of Commands/responses for CUC,
MB, DB, CDUC nodes

 Low level hardware devices control
commands

* System configuration commands
* High-level application-specified commands

List mode data

* Data addressing strategies

In the 80-bit OpenPET list mode data, there are 22
bits allocated for addressing.
- Among them, 14 bits are standard address bits.

- an extra 8-bit address is reserved and can be
redefined by the OpenPET users.

00: individual channel data addressing mode
01: crystal data addressing mode
10~11: user defined data addressing mode

Individual channel data addressing
mode (00}

Host computer
A

Coincidence Unit
cucC

AAA AAAa

5+3+3+3=14 bits address: 11110 011 010

MBO MB1 MB2 MB4 MB5 MB6 MB7

54+3+3 =11 bits address: 11110 011 010

DUCO DUC1 Duc2 DUC3 DUC4 DUCs DUCe DucC7

5+3 =8 bits address: 11110 **% 010

DBO| (DB1| |[DB2| |DB3| |DB4| |DB5| |DB6| |DB7

Sbits address: 11110 Kxk kxk

CHO| |[CHl| ® @ ®@ |CH30| CH31

Detector Unit

Crystal data addressing mode

Host computer
A

°
Coincidence Unit

9+3+3+3 =18 bits address: 474421
111 *100 *011 oll1o0l0

MBO MB1 MB2 MB4 MB5 MB6 MB7

9+3+3 =15 bits address:
111 *100 *011 011010

DUCO DUC1 DuC2 DUC3 DUC4 DUCS DUC6 bucy

9+3 =12 bits address:
111 *100 *011 ***010

DRO| [DB1| |[DB2| | DB3| |[DB4| |DB5| |DB6| |DB7 g

Y . »

6+3=9bits address: 3

111 *100 *011 el =
:““"“"“""'l :“' """""""" 77
|]

: CHO| |CH1| |CHO| |CH1 : o0 Q: CH30| |CH31| |CH30| |CH31 : Rowd, *100 ||
| | | |
: Block Detector 0 : : Block Detector 7]

Detector Unit

List mode data format

* Coincidence events data format

Bit 79: 1 (1: coincidence event data format flag)
Bit 78~76: MB address bits (3 bits)

Bit 75~73: DUC address bits (3 bits)

Bit 72~70: DB address bits (3 bits)

Bit 69~65: Channel address bits (5 bits)

Bit 64~57: User defined address bits (8 bits)

Bit 56~54: DOI data bits (3 bits)

Bit 53~42: TDC data bits (12 bits, LSB: 25ps)
Bit 41~40: unused bits (2 bits)

Bit 39: valid bit (1: valid coincidence data; 0: invalid coincidence data)
Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16~14: DOI data bits (3 bits)

Bit 13~2: TDC data bits (12 bits, LSB: 25ps)
Bit 1~0: unused bits (2 bits)

Single events data format

Time Mode

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 1 (1: single event data format)

Bit 77~73: 00000 (5 bits) (time mode)

Bit 72~40: unused bits (33 bits)

Bit 39: valid bit (1: valid single event data; 0: invalid single event data)
Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)
Bit 16~14: DOI data bits (3 bits)

Bit 13~2: TDC data bits (12 bits, LSB: 25ps)
Bit 1~0: unused bits (2 bits)

Single events data format

Energy mode

Bit 79: 0 (O: not coincidence event data format)
Bit 78: 1 (1: single event data format flag)

Bit 77~73: 00001 (5 bits) (energy mode)

Bit 72~40: unused bits (33 bits)

Bit 39: valid bit (1: valid single event data; O: invalid single event data)
Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16~14: DOI data bits (3 bits)

Bit 13~2: Energy data bits (12 bits)

Bit 1~0: unused bits (2 bits)

Single events data format

Raw ADC data mode

Bit 79: 0 (0: not coincidence event data format)

Bit 78: 1 (1: single event data format flag)

Bit 77~73: 00010 (5 bits) (Raw ADC data mode)

Bit 72~70: (3 bits)

000: Raw ADC data from a single channel;

001: Raw ADC data from all 32 channels;

010~111: unused

Bit 69~59: total ADC data count (11 bits) (maximum: 32 channels * 64 samples = 2048)
Bit 58~48: current ADC data count (11 bits)

Bit 47~40: Reserved bits (8 bits)

Bit 39: valid bit (1: valid single event data; 0: invalid single event data)
Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16~14: DOI data bits (3 bits)

Bit 13~2: Raw ADC data bits (12 bits)

Bit 1~0: Unused bits (2 bits)

Single events data format

Standard Anger-logic mode

Bit 79: 0 (O: not coincidence event data format)

Bit 78: 1 (1: single event data format flag)

Bit 77~73: 00011 (5 bits) (Standard Anger-logic mode)
Bit 72~40: unused bits (33 bits)

Bit 39: valid bit (1: valid single event data; O: invalid single event data)
Bit 38~36: MB address bits (3 bits)

Bit 35~33: DUC address bits (3 bits)

Bit 32~30: DB address bits (3 bits)

Bit 29~25: Channel address bits (5 bits)

Bit 24~17: User defined address bits (8 bits)

Bit 16: unused bits (1 bits)

Bit 15~8: X (8 bits)

Bit 7~0: Y (8 bits)

Single events data format

Test modes

Bit 79: 0 (0: not coincidence event data format)

Bit 78: 1 (1: single event data format)

Bit 77~73: 00100 (5 bits) (Test model)

Bit 72~40: 010101010101010101010101010101010 (33 bits)

Bit 39~0: 01(40 bits)

Single events data format

Reserved modes (10 modes)

Bit 79: 0 (O: not coincidence event data format)
Bit 78: 1 (1: single event data format flag)

Bit 77~73:00101~01111 (5 bits)

Bit 72~0: to be defined

User defined modes (16 modes)

Bit 79: 0 (O: not coincidence event data format)
Bit 78: 1 (1: single event data format flag)

Bit 77~73: 10000~11111 (5 bits)

Bit 72~0: user defined

Single events data format

Status words format

Time status word

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 0 (0: status words format flag)

Bit 77~73: 00000 (5 bits) (Time word format)
Bit 72~39: 1lus timer (34 bits)

Bit 38~0: reserved (39 bits)

Event rate status word

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 0 (0: status words format flag)

Bit 77~73: 00001 (5 bits) (event rate format)

Bit 72~40: reserved (33 bits)

Bit 39~0: total number of events (40 bits)

Single events data format

Status words format

Temperature status word (3 digits, range from 0.1°C ~99.9°C)

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 0 (0: status words format flag)

Bit 77~73: 00010 (5 bits) (temperature format)
Bit 72~71: XX (2 bits) (00: CUC temperature; 01: MB temperature; 10: DUC
temperature; 11: DB temperature)

Bit 70~68: MB address bits (3 bits)

Bit 67~65: DUC address bits (3 bits)

Bit 64~623: DB address bits (3 bits)

Bit 61~58: x10 temperature (4 bits ASIC code)
Bit 57~54: x1 temperature (4 bits ASIC code)
Bit 53~50: x0.1 temperature (4 bits ASIC code)
Bit 49~0: reserved (50 bits)

Single events data format

Status words format

Reserved status words (13 modes)

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 0 (0: status words format flag)

Bit 77~73: 00011 ~01111 (5 bits) (reserved)

Bit 72~0: to be defined

User-defined status word (16 modes)

Bit 79: 0 (0: not coincidence event data format)
Bit 78: 0 (0: status words format flag)

Bit 77~73: 10000 ~11111 (4 bits) (user defined)
Bit 72~0: user defined

System software framework models

* Host computer software functions

- system configuration, calibration and
monitoring,

- data acquisition
- data analysis

Host computer software functions

* Single events data analysis

a. Addressing analysis
-DUC/MB/DB/CH address mapping
-Individual crystal ID address mapping (Flood map and Crystal ID lookup table)

b. Energy data analysis
- ADC channel data analysis
- Energy histogram analysis (energy resolution, energy window and etc.)

c. Time data analysis
- TDC channel data analysis
- Time histogram analysis (time resolution, time delay correction and etc.)

d. Test mode data analysis
- data transmission integrity analysis

Host computer software functions

* Coincidence events data analysis

a. Coincidence pair addressing analysis
b. Coincidence event analysis

- Sinogram

- Random correction and etc.

Host computer software functions

e Status words data analysis

a. Time word analysis

b. Event rate analysis

c. Temperature and voltage monitoring
d. User-defined status processing

Host computer software model

OpenPET Application Layer (OAL)

Top level System configuration,

monitor and management (including Energy calibration (including
system level addressing ,flood map analog gain setting and
and crystal decoding, coincidence energy window configuration)

pair settings and etc.)

Time calibration (including TDC
calibration and individual channel
time delay calibration)

Other top level functions for
user defined applications

OpenPET System
Configuration Layer (OSCL)
l""""""""";
| CUC,MB,DUC
| aﬁggiaMhZYr([j)xfre and DB firmware : CUC, MB,
| e and software | | IPUE e P12
[m’ana - ém configuration and | | Command
: 9 management | process
) |
| CUC,MB,DUC CUC, MB,DUC :
: and DB and DB data] Event data
1 addressing and (LUT and etc.) |<):f> analysis and
| configuration configuration and | | process
) control management |
- |
Communication Evert data e
Support Layer (CSL) | "t | |communication
protocol
VAN
Hardware Abstract
Layer (HAL)
Device drivers
[e e e e P R R R —
I | High-speed hard USB : Ethernet 1! Optic fiber !

disk access driver | driver | lcable driver|

CUC/MB/DUC/CDUC software

OpenPET Configuration
Layer (OCL)

(
I| cucmBDUC cucmepuc ||
Il hardware test firmwargsoftware ||
: monitor, and configuration and :
I management management I cucmMBDUC
| | <> Command
Il cucmBpDUC CUCMB/DUC data | ! process
: addressing and (lookup table and :
I configuration etc.) configuration I
| control and management |
e e J

Application Support Layer (ASL)

Devices (DIO, Memory) Status/Command
Access Control FATEE R EE e communication protocol

Hardware Abstract Layer (HAL)

C Standard
Library

Device drivers
I— ————————————————————————— = ==

Status/Command

registers and interfaces |
AN

—_ == === oo beoocoooooooosod oo

)
o
=
(1]
3
9
<
(92}
O
=
8
°
°
°

~
Status/Command
registers and interfaces

DIO | |Memory || SD Misc. @ ® ®

System Firmware or Hardware

CUC/MB/DUC/CDUC firmware (FPGA)
framework model

FPGA firmware (CUC/MB/DUC/CDUC)

@ Nios Il CPU core

@ Interface register array

¥ &

fm=——=—=--=-—--
@23;,2?22:? : PET function
f L
1 ~—{bucicbuc only)! Logic circuits

g i

Hardware interface logic circuits
(bridge to DIO, memory, SD, and misc.)

A A A A

A A A A

DIO Memory SD Misc.

Hardware (CUC/MB/DUC/CDUC)

DB (FPGA) framework model

FPGA firmware (DB)

@ DB command coprocessor

s

@ PET functional logic

&L

Hardware interface logic
(bridge to DIO, memory, Al, and misc.)

A A A

A 4 A 4 A A

DIO Memory Al Misc.

Hardware (DB)

v

v

Load DUC FPGA Load CUC FPGA
pg | Lead DBFPGAFW DuC FW from EPCS cUCl FW from EPCS MB Load MBFPGA FW
from EPCSmemory e — e — from EPCS memory
Load DUC SW from Load CUC SW from Load MB SW from
buc SD card cud SD card B EPCSmemory
RunDUC HW Run CUC HW Run MB HW
buc integrity test cuc integrity test MB integrity test
‘ ; y Y ; v
R ittt
puc | Lead FFGAFW to] | Load FW/SWe |
| DB (when necessary) | CUC | MB,andrunMB
'_____; _____ 1 : HW (when :
necessary)
Detector ~---—-p-=--- !
Run DB HW =
DucC
integrity test Unit

v

Coincidence DB Load DBRAM
Unit T i
\J
Host PC
Host PC

Host
PC

v

Waituntil CUC
boot-up

Y

Allocate addresses for all nodes

|
| Update FW/SW of any nodes (when :
necessary) |

Host PC Data acquisition
Host PC Data amalysis
A
jm——— L —_
Host PC : Image reconstruction |

OpenPET Software and Firmware
Management

Martin S. Judenhofer, PhD

Department of Biomedical Engineering, University of
California-Davis, Davis, CA

OpenPET Meeting, Berkeley, May 10-11, 2012

NN (@

UCDAVIS cIm g

UNIVERSITY OF CALIFORNIA

How to manage the software/firmware
and associated source codes

Categories of OpenPET users?
* End user with limited programming skills
« End user with programing skills (FPGA & software)

* Developers

UCDAVIS cmg:

VERSITY OF C

How to manage the software/firmware
and associated source codes

What would users like to see ?
* Provide packages for users to download
* Provide regular updates
» Have ticketing system for bug reporting
* Provide documentation for framework usage

 Provide binaries for advanced users

INAA (@

UCDAVIS cmg

VERSITY OF C

Structure of Software and Firmware

System Firmware uC source API
component (FPGA) (NIOS 1) (on host)
DB Yes No No

DUC Yes
MB Yes
CucC Yes
Host PC No
—~UCDAVIS

UNIVERSITY OF CALIFORNIA

Yes
Yes
Yes

No

No
No
No

Yes

cmg:—

What should/would users like
to be able to modify

System component Simple Software & FPGA Developer
End user End user

DB FPGA

DUC FPGA

DUC software

MB FPGA

MB Software

CUC FGPA

CUC software

Host PC API use

Host PC API
modification

No

No

No

No

No

No

No

No

No'

Yes

No'

No'’

No'

No'

Yes

No'

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Making changes here requires great attention and may require recompilation and correction of other backbone FPGA code

—~UCDAVIS

UNIVERSITY OF CALIFORNIA

cmgi—

Deployment of packages (simple user)

In the beginning
- Simply download binaries

« User has to take care that hex files get downloaded properly
* Prepare “Boot-SD card”
Future
 Download one software package
- Main software should be able to configure and flash complete

system by downloading the correct binaries (included in software
deployment)

* Only have to flash the MB FPGA once

- Automatically prepare “Boot-SD card”

O L CMg

INAA (@

Deployment of packages (advance user)

Download binaries source code as needed
- A software user is not interested in modifying the FPGA code
* A non developer user may not need/want to modify the backbone/
framework

« Developer should receive all sources

INAA (@

UCDAVIS cmg

UNIVERSITY OF CALIFORNIA

How the keep a current version of all the
source code?

e Since several groups will participate in
generating the source codes which will be
used in the OpenPET framework, we will
need some means of version control

UCDAVIS cmg:

llllllllllllllllllllll

What is version control

e Version control allows tracking of changes done to source
codes

* Version control allows seamless switching between
versions of source codes (“time machine”)

e Source codes can be branched (parallel version) and later
be merged back to the main trunk

e Usually, changes made between versions can be
conveniently visualized

e Used for large community projects (e.g. Linux kernel) and
In software companies

e Allows web hosting of source code. - easy accessible

UNIVERSITY OF CALIFORNIA

UCDAVIS cmg:

What can be used for version control?

* There is several tools available (many free)
—Subversion

—-GIT
—Bittracker

 Web hosting is offered as well

UCDAVIS cmg:

llllllllllllllllllllll

What should we use?

GIT
- Free software
- Easy to use on Windows (great GUI, TortoiseGIT)

- Easy to install on web servers (no external hosting
required)

- Uses SSL encoding for transfers
- Can be made available to download from web pages
- Can monitor user access by means of SSL keys

UCDAVIS cmg:

UNIVERSITY OF CALIFORNIA

Why GIT?

GIT provides some nice features

—Uses local repositories
e Each user has to whole history on his desktop
e User can work independently
e Sub groups can work independently

User 1

ED-

—~UCDAVIS

UNIVERSITY OF CALIFORNIA

cmg:i—

Why GIT?

GIT provides some nice features
—I|s very fast (quick transfers)
—Provides features to branch and merge
—Q@Great data security, each user has a backup!

—Each commit will have to have some comment
which will be very helpful for documentation

UCDAVIS cmg:

VERSITY OF C

Documentation of Source code

e Documentation of source code is essential
to make long term use of it and to have
others use it

 Documentation essentially requires
discipline of the programmer

e Using the versioning software can provide
some documentation on specific bug fixes
and progress

UCDAVIS cmg:

llllllllllllllllllllll

Documentation of source code

e Use Doxygen

It can help you in three ways:

e |t can generate an on-line documentation browser (in HTML) and/or an off-line
reference manual (in) from of a set of documented source files. There is also
support for generating output in RTF (MS-Word), PostScript, hyperlinked
PDF, compressed HTML, and Unix man pages. The documentation is
extracted directly from the sources, which makes it much easier to keep the
documentation consistent with the source code.

* You can configure doxygen to extract the code structure from undocumented
source files. This is very useful to quickly find your way in large source
distributions. You can also visualize the relations between the various
elements by means of include dependency graphs, inheritance diagrams, and
collaboration diagrams, which are all generated automatically.

* You can also use doxygen for creating normal documentation

From : www.doxygen.org
UCDAVIS cmg:

UNIVERSITY OF CALIFORNIA

Documentation of source code

* To be most efficient, Doxygen uses tags

which are inserted in the source code
comments

/** <A short one line description>
<Longer description>

<May span multiple lines or paragraphs as needed>

@param Description of method's or function's input parameter
@param ...

@return Description of the return value
*/

UCDAVIS cmg:
UNIVERSITY OF CALIFORNIA

